

iisseell--PPrrooNNCC

Programming Instruction

w
w

w
.i

se
l.

c
o

m

®

isel-ProNC Programming Instruction

2

To the Manual:

In this manual you find same symbols pointing out your attention to important information.

Caution: Example: Hint: Information:

! �

� �

© Fa. iselautomation KG 2003
 All rights reserved.

In spite of all care printing errors and mistakes cannot be ruled out completely.
Suggestions for improvement and notes on errors are always welcomed.

No part of this publication may be copied or distributed, transmitted, transcribed, stored in a retrieval
system, without the express written permission of iselautomation KG.
All information are supplied without liability. Changes are possible at any time without prior notice.

Producer: iselautomation KG
 Bürgermeister-Ebert-Straße 40
 D-36124 Eichenzell

 Tel.: (06659) 981-0
 Fax: (06659) 981-777
 email: automation@isel.com
 http://www.isel.com

Version: 10/2003

isel-ProNC Programming Instruction

3

Contents

CONTENTS .. 3

1 INTRODUCTION.. 6
1 INTRODUCTION ... 6
1.1 COPYRIGHT .. 6
1.2 DEDICATION OF THE PROGRAM-PACKAGE PRONC .. 7

1.2.1 Short characteristic.. 7
1.2.2 Principles of programming with ProNC ... 8

2 PROGRAMMING WITH PRONC .. 12
2 PROGRAMMING WITH PRONC .. 12
2.1 STRUCTURE OF THE APPLICATION PROGRAM .. 12

2.1.1 Program structure (main program).. 12
2.1.2 Annotations in the program (comments) ... 13

2.2 STRUCTURE OF A NC SET ... 14
2.2.1 Elements of the NC set and variable set length .. 14
2.2.2 Annotations in the set, comments ... 16
2.2.3 Sequence and replay of commands / words in the NC set ... 17
2.2.4 Leave out of words .. 17

2.3 STRUCTURE OF A WORD .. 17
2.3.1 Address letters... 18
2.3.2 Numeric string with decimal point.. 19
2.3.3 Numeric string without decimal point .. 19
2.3.4 Set number: N-word .. 19
2.3.5 Path commands .. 20
2.3.6 Coordinates ... 20
2.3.7 Miscellaneous commands: M-word... 22

2.4 SPECIAL SIGNS ... 22
2.5 SUBPROGRAMS... 23

3 PRONC LANGUAGE DESCRIPTION... 24
3 PRONC LANGUAGE DESCRIPTION.. 24
3.1 COMMANDS BY DIN 66025 IN THE NC SET .. 30

3.1.1 Path commands .. 30
3.1.1.1 Overview Path commands in ProNC ... 31
3.1.1.2 Positioning with fast velocity .. 33
3.1.1.3 Linear interpolation .. 34
3.1.1.4 Circular interpolation clockwise ... 35
3.1.1.5 Circular interpolation counter clockwise .. 37
3.1.1.6 Dwell time .. 39
3.1.1.7 Fast velocity with statement of frame .. 40
3.1.1.8 Processing velocity with statement of frame ... 41
3.1.1.9 Helix clockwise .. 42
3.1.1.10 Helix counter clockwise... 43
3.1.1.11 All motion commands.. 44
3.1.1.12 Definition of interpolation plane... 45
3.1.1.13 Set up zero point ... 46
3.1.1.14 Path motion ... 47
3.1.1.15 Definition of measure .. 49
3.1.1.16 Reference run ... 50
3.1.1.17 Teach .. 51
3.1.1.18 Drilling cycle define ... 52
3.1.1.19 Start drilling cycle .. 54

isel-ProNC Programming Instruction

4

3.1.1.20 Coordinate statement ..55
3.1.1.21 Set memory ...56
3.1.1.22 Manipulation of technology variables ..57
3.1.1.23 Text output...58

3.1.2 Miscellaneous commands..59
3.1.2.1 Program interruption...60
3.1.2.2 Program beginning, program end ..61
3.1.2.3 Spindle commands...62
3.1.2.4 Coolant..64
3.1.2.5 Workpiece clamp...64
3.1.2.6 Pump ..65
3.1.2.7 Lamp...65
3.1.2.8 Periphery option ...66
3.1.2.9 Hand-/Test-Mode ...67
3.1.2.10 Get inputs / outputs...67
3.1.2.11 Set outputs..68
3.1.2.12 Set Analog-/PWM-output ..70
3.1.2.13 Current axis position ..70
3.1.2.14 Current system time...71
3.1.2.15 Current date...71
3.1.2.16 Dialog field to assign a value to a R-variable ...72

3.1.3 FastVel-command..73
3.1.4 F-command..74
3.1.5 S-command..75
3.1.6 Tool change..76
3.1.7 Subprogram technology...77

3.1.7.1 Declaration subprogram...77
3.1.7.2 Subprogram call ...79

3.2 INSTRUCTIONS: SYNTACTIC EXTENSIONS TO DIN 66025 ...81
3.2.1 Variables ..81

3.2.1.1 P-variables ...83
3.2.1.2 Q-variables ...84
3.2.1.3 R-variables ...86
3.2.1.4 Data transfer R-variable to coordinate ...88

3.2.2 Parameter calculation ..89
3.2.2.1 Arithmetical expressions ..89
3.2.2.2 Functions..91
3.2.2.3 Boolean expressions..95
3.2.2.4 Assignments...96

3.2.3 Assignments to control the program process ..98
3.2.3.1 Conditions ..98
3.2.3.2 Branch ..100
3.2.3.3 Selection instruction ...101
3.2.3.4 Counting loop ...102
3.2.3.5 Loop with test at start ...103
3.2.3.6 Loop with test at the end ..105

3.2.4 Instructions to communication with extern devices ...107
3 .2.4.1 Request for an operator dialog ...107
3.2.4.2 Activation of several user programs...108

4 SYNCHRONISATION TO THE MOTION END, INTEGRATION OF TEACH IN...............................111
4.1 SYNCHRONISATION TO THE MOTION END ...111
4.2 INTEGRATION TEACH-IN ...112
4.3 EXAMPLE FOR A USER PROGRAM WITH INTEGRATION TEACH-IN ...115

5 SELECTED SOLUTIONS WITH PRONC..116
5.1 ISEL-XYZ-PLANTS / SEVERAL CARTESIAN KINEMATICS ..116

5.1.1 Learning ...116

isel-ProNC Programming Instruction

 5

5.1.2 Figures... 116
5.1.3 Milling of a simple contour... 117
5.1.4 Drilling.. 118
5.1.5 Milling of pockets... 119
5.1.6 Engraving script with Laser ... 120
5.1.7 Welding.. 120

6 SUMMARY .. 122
6 SUMMARY .. 122

GLOSSAR... 123

INDEX ... 124

isel-ProNC Programming Instruction

6

1 Introduction

1 Introduction

Objective of this
manual:

The documentation for the program-package ProNC should ease the
entry into the use of this extensive application. The manual should
also help to explain the programming features (motion instructions,
input-/output operation, Teach-In, parameter calculation, subprogram
technology, arithmetical and Boolean expressions, functions)
integrated in ProNC.
The objective is to decrease the time for programming and start up by
realizing customer specific tasks at processing (cutting processing,
welding-/, water jet cutting-/ burning and sticking technologies) in the
handling- / assembly areas.

1.1 Copyright

Copyright: All rights to the manual and programming package ProNC, especially

the copyright are owned by

 isel-automation KG
 Bürgermeister-Ebert-Straße 40
 D - 36124 Eichenzell

Copying and transfer
the software:

All unauthorised copying, distribution or transfer of this software is
strictly forbidden and will be prosecuted criminally.

The legal use and
distribution of ProNC:

The purchase of the installation-CD or – disks including the manuals
allows the using comparable to that of a book. With a book, it is not
possible for a book to be read at different places by several people at
the same time. Similarly, the program-package ProNC may not be
used on different controllers (PC-based) at different places by several
people simultaneously.

Backup copies:

Backup copies of the program-package Pro-NC are permitted. In no
case it is allowed to make those copies available to third parties.

Compensation:

At violations against the copyright the purchaser engages opposite the
owner of the copyright, isel-automation KG, to damage compensation.

Liability for application
programs:

 !

The program-package ProNC as well as the manual was produced
with carefulness. All application programs printed or as example
programs on CD, were tested by a corresponding hardware.
iselautomation does not assume any liability or guarantee, that this
manual, the program-package ProNC or application programs are
perfectly or suitable for a particular purpose. For consequence
detriments each legal responsibility or liability is ruled out.

isel-ProNC Programming Instruction

 7

Suggestions: Since mistakes and errors cannot be ruled out, we are always grateful
for suggestions, written notes or opinions.
email: tech-support@isel.com

1.2 Dedication of the program-package ProNC
1.2.1 Short characteristic

Dedication of ProNC:

The software product ProNC integrates an operator surface according
to the SAA standard and a programming platform for implementation
and test/debugging of application programs for CNC controlled
machines/plants.
These NC application programs corresponds to the ISO syntax (G-
code-programming to DIN 66025) or the PAL syntax (Programming
Assembly Language).
Functional extensions were carried out to the standardized syntax of
the ISO 1834/DIN 66025.

Support for start-up: Special attention was put to an efficient support to start up during the

test-phase. Therefore commands were implemented in ProNC known
from a debugger.

• Display of process- and real-variables in real-time
• Manipulation of process- and real-variables in real-time
• Activation / deactivation of all input- and output operation
 as well as of the spindle controlling with help of dummy-
 functions
• Program animation
• Teach-In / efficient frame-management and manipulation
• Single-step-mode
• Program execution to break point
• Activation / deactivation of breakpoints

In automatic mode the program test is supported by occasion of activating break points
on any NC-sets (program lines in an application program) as well as the possibility of manipulation
of current values of R-variables (data type: floating point).

direct Teach-In:

�
The Teach-In can happen directly, if no self-retaining gears exist in
the cinematic chain. There the axis with current-free motors will be
moved with hand to the desired position. The gained actual position
vector (joint coordinates at non Cartesian Kinematics) will be stored
in a geometry file (frame file) after a transformation as a cinematic
independent data configuration.

indirect Teach-In:

�
When using indirect Teach-In the Tool Center Point (TCP) will be
moved to the desired target position / target orientation with help of
the mouse or function keys in a complex dialogue-window or with
help of the isel-Operating Panel.

Within the hierarchy of the isel-Control-Software under Windows 98 / NT/ 2000 / XP the

isel-ProNC Programming Instruction

8

operating- and programming surface ProNC applies on a software platform which almost
exclusive consists of Dynamic Link Libraries (DLLs).
These device-driver-DLLs realize primarily motion control modules (MCTL), input-/output-
modules (IO), spindle modules (SPN) and tool changer modules (TCH).

Control module:
(device-DLLs)

�

All control module delivered by iselautomation KG are independent
software products with separate documentations.
ProNC manages in the current implementation:
• Two motion control modules (MCTL) with at most each 6 axes

(motion generation, i.e. interpolation and generation of a velocity
profile / slope and motion implementation, i.e. e.g. at DC/AC-
servo-drive digital feedback position control)

• Four input- and output modules (IO) with at most 4 input-
 4 output ports (each 32 inputs / 32 outputs)
• Four spindle modules (SPN)
• Two tool change modules (TCH) with max. 128 tools

Basic control module
draft:

�

All control module of a device type have the same assignation
interface and an approximate same functionality. This brings the
following advantages for the user:

1. With the investment to the operating- and programming
surface ProNC both plants with stepper motors and plants/kinematics
with DC/AC-servo motors can be operated and programmed, if the
corresponding control module (MCTL-DLLs) is provided for the
motion control.

2. Plants with max. 4 spindles can be programmed.

3. The created application programs can be exchanged or
transmitted between different plants. All plant specific details (e.g.
pitch, gear reduction, velocities, acceleration, port addresses and
others) are specified in the special initialisation file of each control
module. It is not necessary to make any changes in the source
program.

1.2.2 Principles of programming with ProNC

ProNC was implemented as a component of the isel-control-software for machines / plants
with up to 12 axes (2 axes systems with each max. 6 axes).

ProNC is generally executable under Windows 98/Windows NT/Windows 2000/Windows XP.
However it is possible that certain control modules (device-DLLs) can be used only under
Windows 98 or Windows NT/2000/XP.

ProNC is the portation of the hitherto only under MS-DOS running control software Remote,
Pro-DIN and Pro-PAL. All user programs, created and used under MS-DOS in NCP-format
(from Remote), ISO-format (from Pro-DIN) or PAL-format (from Pro-PAL) are usable
furthermore.

ProNC enables both the programming in ISO-/ DIN format and in PAL-format. In section 3 of
this manual the syntax is always represented comparatively. That means, that after "ISO: "
always follows a NC set/command according to ISO syntax or that after "PAL:" always follows a
NC set/command according to PAL syntax.
The technology-oriented syntax of the DIN 66025 (G- and M-instructions) was supplemented

isel-ProNC Programming Instruction

 9

with problem oriented constructions for the structured programming, to parameter calculation as
well as to the access on geometry files (geometry file = frame file) and was defined as a flexible,
efficient programming standard. This programming standard is described as grammar in
section 3 of this manual.
The program package ProNC replaces the program packages Remote, Pro-DIN and Pro-PAL.
According to the philosophy of these „predecessor programs“ the technological parameters
(pitch / gearing, reference velocity, software end switch, switching level etc.) are not defined in
the source program in a so called declaration part, but the parameter will be defined in the
machine data set / machine parameter file (general in the initialisation file of the motion control
module).

Advantage:

Initialisation file
of the motion control
module

�

For example the gearing is edited or changed merely once at the
configuration of a plant with the help of a dialog windows into the
initialisation file of the motion control module, if the available ball
screw will be replaced with a spindle with another pitch.
The advantage consists in the fact, that the source programs are
always portable, i.e. technological details are always "hidden" in the
configuration file (initialisation file) of the motion control module.

In principle, two types of program lines are distinguished in ProNC:

A program line can be::
• a NC-set (especially defined in DIN 66025), e.g.: G1 X100 Y150 Z-50
• an instruction (not defined in DIN 66025), e.g.: While R1 > 0.0

please refer to: Operating Instruction: 5.8.7 Menu Setup - Control

ProNC is based on the experience that with the norms DIN 66025 in Germany or ISO/DIS 6983/1
worldwide it is committed, how numerical controlled machines can be programmed. The
ISO syntax is optimised to technological requests. In the ISO-Syntax are used only letters of
the Latin alphabet to identification activities and parameters.
The PAL syntax based on the ISO syntax with the characteristic, that the compact G- and M-
commands are replaced by mnemonic codes (mnemonics):
In the following example the PAL syntax MOVEABS corresponds to the ISO syntax G90 G1:

ISO: N10 G90 G1 X100 Y200 Z-50
PAL: N10 MOVEABS X100 Y200 Z-50

ProNC-
program structure:

�

A ProNC program consists of NC sets and / or instructions. All NC-
sets (or short sets) consist of words, frequently also named as
commands.
Every word / every command starts with the so-called address letter,
followed by a numeric string, with or without sign as well as with or
without decimal point.

NC-sets in an ISO-program can contain G-commands (e.g. G1) and /
or M-commands (e.g. M3).

NC-sets in a PAL-program can contain mnemonic commands (e.g.
MOVEABS or CLW).

isel-ProNC Programming Instruction

10

Examples for
commands

ISO-syntax PAL-syntax

motion commands
(absolute declaration of

target)

G90 G1 MOVEABS

switch on/get up the
spindle to target speed

 M3 SCLW

The essential difference gets obvious:

1.A Program line structure by ISO syntax:

Use of G- and M-
commands:

Using programming with ISO-syntax motion commands (G-
commands), velocities (F-command), miscellaneous commands (M-
commands) and other commands can combined and each command
type can be written in a program line multiple.

At ISO programming commands are used exclusive with a leading
capital letter (address letter).

1.B Program line structure at PAL-syntax:

Use of mnemonic
commands:

At programming with Pal syntax mnemonic commands are used
exclusive as motion commands and miscellaneous commands.

Advantage of
programming in
ProNC:

Using programming with ProNC you will get very compact and
regular programs. These programs have internationally gained
acceptance and proved themselves in the practice (at application of
the ISO syntax), primarily at programming of numerically controlled
tool machines.

Modality:

�

Modality means, that a specific value (coordinate, velocity or motion
command) is valid in a program context, as long as the value will be
defined newly.
A specified coordinate (motion target) is valid as long, as a new
coordinate instruction will be made. For programming that means:
Within a motion set you have to write only the coordinates, which
shall cause a (absolute or relative) movement in the concerned set.

isel-ProNC Programming Instruction

 11

Modality at ProNC:

�

At programming with ISO- or with PAL-syntax motion commands
(ISO: G-commands, PAL: path commands) and also coordinate
words (e.g. X, Y, Z, U, V, W, A, B or C) work modal:

The NC-set

ISO: N001 G90 G1 X100 Y200 Z300
e.g.
PAL: N001 MOVEABS X100 Y200 Z300

defines with help of the G-commands G90 G1 e.g. with help of the
PAL-motion command MOVEABS a linear interpolation. This
definition of the interpolation type is modal e.g. „self holding“. So that
this interpolation type is also valid in the following set:

ISO: / PAL:
N002 X150 Y250 Z350

It has not be fixed explicitly.

please refer to: Section 3: ProNC language description

Preview chapter 2: Chapter 2 of this manual contains the most important rules of ISO-

e.g. PAL-syntax.

Preview chapter 3: In chapter 3 you find the complete language description of ProNC

(ISO-syntax compared with PAL-syntax). It represents the most
extensive chapter of this manual.

Preview chapter 4: The integration of geometry information in the application program
and the access to geometry data (frames) during program execution
is described in chapter 4.

Preview chapter 5: This chapter describes simple application programs, which can be
tested on each plant with at least two axis.

isel-ProNC Programming Instruction

12

2 Programming with PRONC

2 Programming with PRONC

The constructions in this chapter refer to the application of the ISO-syntax and also to the
PAL- syntax.
What is the difference between ISO-syntax and PAL-syntax ?
The difference consists solely in the substitution of G- and M-instructions of ISO-syntax with
mnemonic instructions (mnemonic path instruction and mnemonic miscellaneous instructions)
at PAL-syntax:

Commands by … ISO-syntax:
G- and M-commands

PAL-syntax:
mnemonic commands

path commands

(fix target absolute)

G90 G1 MOVEABS

command to switch on
the spindle

 M3 SCLW
SPINDLE ON

Hint:

�

If there is not any equivalent to an ISO-command, it is allowed to use
a command in PAL-syntax.
If the program contains a command in ISO-syntax, it must be declared
as ISO-program.

ProNC
programming:

At ProNC programming all instructions in ISO-syntax are identical
with all instructions in PAL-syntax.
That means, a FOR loop has always the same syntax, but the NC
sets inside a FOR loop have to be defined always either in ISO-
syntax or in PAL-syntax.

please refer to: Section 3.2 Instructions

2.1 Structure of the application program

Components of an
application program

An application program consists always of a main program none,
one or several subprograms. Subprograms will be declared in front of
the main program.

2.1.1 Program structure (main program)
Main program:

A main program consists of a sequence of NC sets and/or
instructions. The first and the last NC set of the main program are
prescribed absolutely.

isel-ProNC Programming Instruction

13

The follow table shows the simple structure of a main program:

characteristic syntactic identifikation

by ISO-syntax

syntactic identification
by PAL-syntax

first set

 marked with the special sign %
example:
%123

marked with the mnemonic
PROGBEGIN
example:
PROGBEGIN

sequence of
sets, forming the
real program
body

 example:
N0 G74
N1 G1 X100 Y200 Z300
N2 X200 Y300 Z400

example:
N0 REF
N1 MOVEABS X100 Y200 Z300
N2 X200 Y300 Z400

last set marked with the miscellaneous
function M30

marked with the miscellaneous
function PROGEND

Table 2.1.1: Structure of a main program

Identification of
program beginning:

To indicate the program beginning you have to use the special
sign % or the mnemonic PROGBEGIN. Previous to these special
signs subprograms or arbitrarily many comments can be included.

please refer to:
Section 2.1.2 Annotations in the program
Section 2.5 Subprograms

2.1.2 Annotations in the program (comments)
Comments in an application program increase documentation good and relieve so the
program test and program maintenance. Four kinds of comments are distinguished in ProNC:

• Comments extending over several lines have to start according to the ISO-syntax with the

special sign (and they must end with the special sign), according to PAL-syntax you have
to use { respectively }.

• Comments, which shall be separators, have also to start according to the ISO-syntax with
the
special sign (and they must end with the special sign), according to PAL-syntax you have
to use { respectively }.

Comments in round
(ISO) respectively
curly {PAL} brackets:

�

Comments, included in round respectively curly brackets, are always
filtered by the compiler from the source file and they will not be taken
over into the CNC file.
Therefore the CNC file gets more compact.

A comment in round respectively curly brackets can apply to
arbitrarily many lines. In ProNC comments can include all signs of
ASCII-sign stock (so also the signs % and :) in contrast to the
reduction in DIN 66025.

isel-ProNC Programming Instruction

14

ISO-syntax: (this is a comment)
PAL-syntax: { this is a comment }

A comment can extend over several lines. This has a big advantage:

When starting the processing some program sections can be
"commented out". That means any long sequence of NC sets will
become comments by writing brackets. At processing these sets will
be read over as one or more „empty sets“ and so they will be
ignored.

• Comments, extending over a complete line until the end of line, must begin with a semicolon ;
and must end with the end of line character CR = Carriage Return (ENTER-key code).

Comments over a
complete line:

�

The compiler does not filter these comments out of the source file, if
the comment filter (compiler option) is switched off. Then you will find
these comments in the user program.

The semicolon „;“ to identify a comment over a complete line must be
written in the first column of the comment line.

example:

; this is a comment from column 1 to end of line

• Comments, finishing a NC set, start with a semicolon „;“ after the last character of the NC set
and end with the end of line character CR.

Comments as the end
of a NC-set:

�

Comments as the end of a NC set the compiler will always filter out of
the source file.

example:

N10 G1 G91 X100 ; relative motion 100 mm in the X-axis

2.2 Structure of a NC set

2.2.1 Elements of the NC set and variable set length

NC set:

A NC set consists of several commands (also called command
words or only words). The first character of a set is always a capital
letter. The initial letter of a command/word is also called address
letter.

Word as synonym for
command:

In usage of NC programming the synonym command will be often
used for word. That means, that path commands can be marked for
example G-words as well as G-commands.

Programming in ISO-syntax G- and M-commands will be used to define path commands and
miscellaneous commands.

Programming in PAL-Syntax mnemonic commands will be used to define path commands
and miscellaneous commands.

isel-ProNC Programming Instruction

15

The special capital letter (address letter), introducing every word of the NC set, gives the word a
"name":

ISO-syntax:

aaddddrreessss lleetttteerr wwoorrdd // ccoommmmaanndd mmeeaanniinngg

N N-word = N-command set number

G G-word = G-command path command

M M-word = M-command miscellaneous command

E E-word = E-command

rapid feed

F F-word = F-command

processing feed

T

T-word = T-command tool number

S

S-word = S-command spindle speed

Table 2.2.1:

Selection of important words in NC sets (ISO-syntax)

PAL-syntax:

aaddddrreessss lleetttteerr wwoorrdd // ccoommmmaanndd mmeeaanniinngg

N N-word = N-command set number

 mnemonic command,
e.g.

MOVEABS

path command

 mnemonic miscellaneous
command, e.g.

SETBIT

miscellaneous command

F F-word = F-command

 feed

T

T-word = T-command tool number

S

S-word = S-command spindle speed

Table 2.2.2: Selection of important words (mnemonic commands) in NC sets (PAL-

syntax)

Separators: The commands/words of a set are separated with separators. The

following separators are allowed in ProNC:

• one or several blank characters
• one or several tabulators
• combination of blank characters and tabulators
• a comment

isel-ProNC Programming Instruction

16

Length of a NC set: According to the possibility, that the number of words in a set are not

dictated, the length of a NC set is variable.

Valid NC sets:

�

; reference run:
ISO: N1 G74
PAL: N1 REF

; relative path coordinates:
ISO: N2 G1 G91 X100.0 Y200.1 Z300.234 F200.23
PAL: N2 MOVEREL X100.0 Y200.1 Z300.234 F200.23

; absolute path coordinates, spindle speed in [rpm] and spindle on:
ISO: N3 G1 G90 X100.0 S15000 M3
PAL: N3 MOVEABS X100.0 S15000 SCLW

Modality: Viewing the length of a NC set the modality becomes noticeable.

That means, all path commands (ISO: G-commands, PAL:
mnemonic path commands), defined in the set n and also valid in the
set n+1, you don`t have to define in set n+1 explicitly:

Modality in the NC set:

�

The path command G1 G90 | MOVEABS (linear interpolation,
absolute path coordinate) is defined in set N001 and will be effective
in set N002. Only beginning with the set N003 the use of the path
command G91 | MOVEREL make the relative path instruction
effective.

ISO:
N001 G1 G90 X100 Y200
N002 X150 Y250
N003 G1 G91 X10 Y20

PAL:
N001 MOVEABS X100 Y200
N002 X150 Y250
N003 MOVEREL X10 Y20

 please refer to: Section 2.3 Structure of a word

2.2.2 Annotations in the set, comments
A comment is interpreted as separator, if it is enclosed in round brackets (ISO-syntax)
respectively curved brackets {PAL-syntax}. Therefore a comment can also be defined between
two words.

Comments as
separators:

�

valid NC set with comments as separator:

ISO:
N10 G1 X100 Y200 Z300 (velocity) F1000

PAL:
N10 MOVEABS X100 Y200 Z300 {velocity} F1000

isel-ProNC Programming Instruction

17

2.2.3 Sequence and replay of commands / words in the NC set
The order of the individual words in a set is specified, how described in the following table:

syntax 1 2 3 4 5 6 7

 N-word

ISO:
G-

command
PAL:

mnemonic
command

coordinate-
words:
X/Y/Z-
U/V/W-
A/B/C-
word

I-word
J-word
K-word

F-
word

S word ISO:
M-command

PAL:
mnemonic
command

 set-
number

path-
condition

target
coordinates

interpo-
lation

parameter

feed spindle
speed

miscellaneous
function

ISO: N100 G91 G2 X100 I50 F75 S10000 M111

PAL: N100 CWREL X100 I50 F75 S10000 SETB A1.1

In ProNC it is allowed, to write several path commands (G-commands) and several
miscellaneous commands (M-commands) in one set.

2.2.4 Leave out of words
In the norm DIN 66025 the modality is described as follows:

Modality: “A word, which does not change in its effect in several consecutive

sets of a user program, has to be defined only once and can be left
out in all following sets, for which it shall be valid unchanged."

2.3 Structure of a word

A word according to the DIN- / ISO-norm consists of an address letter, followed by a number
(in the DIN norm the name „numeric string“ is used):

Words:

�

G99 is a valid G-word (path command).
N88 is a valid N-word (set number).

GG_100 is an invalid word.
N?88 is an invalid word.

Natural or decimal
numbers:

The number can be a natural or a decimal number. There is an
absolute assignment of natural respectively decimal numbers to the
address letters:
At D-, G-, L-, M-, N-, S- or T-commands a natural number follows
always the address letter.
The decimal number can be signed. Do you use a positive number
the sign can be left:

+1.0 is identical with 1.0

isel-ProNC Programming Instruction

18

2.3.1 Address letters

Address letters:

The word is obviously specified in his meaning by address letters.

According to the 26 letters of the Latin alphabet 26 several DIN/ISO words are possible (sd:
signed digit):

Address-

letter

DIN 66025 ProNC assigned
number

A rotary motion around the

X-axis
rotary motion around the
X-axis

decimal number

B rotary motion around the
Y-axis

rotary motion around the
Y-axis

decimal number

C rotary motion around the
Z-axis

rotary motion around the
Z-axis

decimal number

D

tool correction memory

not used natural

E

fast feed fast feed decimal number

F

processing feed processing feed decimal number

G

path command path command natural

H

not used not used

I

interpolation parameter to X-
axis

interpolation parameter to X-
axis

decimal number

J

interpolation parameter to Y-
axis

interpolation parameter to Y-
axis

decimal number

K

interpolation parameter to Z-
axis

interpolation parameter to Z-
axis

decimal number

L

available identification of
subprogram

natural

M

miscellaneous command miscellaneous command natural

N

set number set number natural

O

not used not used

P

parameter for special
calculations

identification of
P-variable

natural

Q

parameter for special
calculations

identification of
Q-variable

natural

R

parameter for special
calculations

identification of
R-variable

natural

S

spindle speed spindle speed natural

isel-ProNC Programming Instruction

19

T

tool tool number natural

U,V,W

second motion parallel to
X,Y,Z-axis

reserved to ProNC version
for 2 * 9 = 18 axes

decimal number

X

motion in direction of X-axis

motion in direction of X-axis decimal number

Y

motion in direction of Y-axis motion in direction of Y-axis decimal number

Z

motion in direction of Z-axis motion in direction of Z-axis decimal number

Table 2.3.1: Address letters and its meaning by DIN 66025 and in ProNC

2.3.2 Numeric string with decimal point
In ProNC the oppression both leading and following zeros is permitted. (DIN 66025: numeric
strings with explicit decimal point).
So that the demand of DIN 66025 part 1 is fulfilled.

Valid decimal number:

X300. is equivalent to the coordinate declaration X300.0
Y.3 is equivalent to the coordinate declaration Y0.3

Compiler:

�

The compiler (for ISO- or PAL-syntax) writes always decimal
numbers with a leading zero into the CNC-file. If a decimal point is
defined explicitly the compiler writes three digits after decimal point.

2.3.3 Numeric string without decimal point
Using G-words, L-words, M-words, N-words and P/Q/R-words (variable), only numeric strings
without decimal points (natural numbers) will be demanded.

Advantage at ProNC:

�

For all address letters (coordinates, interpolation parameters, feed
and others) supported in ProNC is valid: whole numbers (i.e. numeric
strings without decimal point) are accepted generally according to
DIN 66025. That means, for a coordinate statement X100 you do not
have to write X100.0.

2.3.4 Set number: N-word
Set number:

�

The natural number following the address letter N indicates the set
number of a NC set. In ProNC no conditions are made relating to the
number. That means, a certain number can appear as often as you
like. It is not necessary to number in an ascending order. It is
convenient, to write the set numbers at the first program design with
a difference from 5 to 10 into the source file. To correct it later, you
can insert NC sets into the relevant positions in the file.
In front of instructions to control the program process you do not have
to write set numbers.
please refer to:
Section 3.2.3 Assignments to control the program process

Set skip:

In the application program any NC set can be suppressed during the
processing, if the sign „/“ is written in front of the N-word of these
set.
The set skip can be activated with the operator panel or with the

isel-ProNC Programming Instruction

20

�

function in the Menu processing (display oriented operation).

example:
The following NC set in ISO-syntax will be skipped during the
processing, if the set skip is activated:

/ N10 S1=1000 M3 ; NC set with optional processing

Program test and set
number:

�

It is pointed out, that the program test happens always line-based.
That means, a break-point applies always on a certain program line
and never on a certain set number. Because a program line 100
exists only once, but a set number 100 can exist n-times in ISO- or
PAL-source program.

 please refer to:
Operating Instruction: 5.6.3 Menu Processing - Set skip

2.3.5 Path commands
ISO-syntax: G-commands

The number, following the address letter G, is a natural number and is described by DIN 66025
part 1 as index number. The path commands in ProNC (G-words respectively G-commands) will
be extensively introduced in section 3.1.1 path commands.

PAL-syntax: mnemonic path-commands

All available mnemonic path commands in ProNC contain a corresponding G-command or a
combination of G-commands. The table in part 3.1.1 Path commands explains the comparison.

please refer to: Section 3.1.1 Path commands

2.3.6 Coordinates
The letters X, Y, Z, A, B, C, U, V and W are reserved as address letter for coordinate words in
ProNC. With that nine numerical axes per axis system can be addressed. After one of the listed
address letters a whole number or a decimal number can follow.

Axis systems in
ProNC:

�

ProNC can manage two axis systems.

Each axis system can contain maximum 6 numerical axes X,Y, Z, A,
B und C in the current version of ProNC.

If you program only one axis system, you have not to differ the
coordinate words.
Programming the two axis systems
• axis system 1
• axis system 2
in one user program, you must have the possibility to differ between
the X-coordinate word of the first axis system and the X-coordinate
word of the second axis system. This differentiation happens by
indexing of the address letters:
• Coordinate words in axis system 1:

Xdecimal number or X1=decimal number
Ydecimal number or Y1=decimal number

isel-ProNC Programming Instruction

21

Zdecimal number or Z1=decimal number
Adecimal number or A1=decimal number
Bdecimal number or B1=decimal number
Cdecimal number or C1=decimal number

• Coordinate words in axis system 2:
X2=decimal number
Y2=decimal number
Z2=decimal number
A2=decimal number
B2=decimal number
C2=decimal number

Please note always the following sequence:
1. address letter X, Y, Z, A, B, C
2. index of the axis system (1 or 2)
3. equals sign `"="
4. the decimal number (or an arithmetical term).

The name of axis (allocation of address letters to coordinate words) to the numerical axis in the
mechanical system is adapted to the norm DIN 66025 and VDI 2861:

At Tool Machine Controls six translatory (X,Y, Z, U, V, W) and three rotatory axes (A, B, C) are
defined.

Tool machine control system:
(DIN 66025, DIN 66217)

translatory axes (linear axes):
• main axis:

X- , Y- and Z-axis build a right-handed
coordinate system. The Z-axis is identical with
the axis of the spindle. The positive direction
of the Z-axis run from the workpiece to the
tool.

• auxiliary axes: U-axis parallel to X-axis
V-axis parallel to Y-axis
W-axis parallel to Z-axis

} reserved
for ProNC
with 9 axes
per axis
system

rotatory axes :

A-axis turns around the X-axis how a right-
hand-helix.
B-axis turns around the Y-axis how a right-
hand-helix.
C-axis turns around the Z-axis how a right-
hand-helix.

Table 2.3.6:

Name of axis by DIN 66025 (Tool machine controls)

The decimal numbers, following the coordinate words immediately, represents absolute values /
absolute measurement (path command G90 | ABS - self-holding) or relative values /
incremental dimension (path command G91 | REL - self-holding).
The unit of a translatory axis is mm (path command G71 | METRIC- self holding) or INCH
(path command G70 | INCH - self-holding).

The unit of a rotatory axis is always grad.

isel-ProNC Programming Instruction

22

2.3.7 Miscellaneous commands: M-word
A number following the address letter M is a natural number and is called also as index number
according to DIN 66025 part 1. The M-commands (ISO-syntax: M-commands, PAL-syntax:
mnemonic commands) realising in ProNC will be described detailed in section 3.1.2.

please refer to: Section 3.1.2 Miscellaneous commands

2.4 Special signs

In accordance with DIN 66025 respectively in addition to above-mentioned all allowed special
signs in ProNC are summarized in the following table:

special signs meaning

%

ISO

PAL

% natural number : Start of main program

%L natural number: Start of subprogram

%SUBR natural number: Start of subprogram

ISO: (
PAL: {

start of comments, if comment shall extend over several lines or
comment will be used as separator in NC set

ISO:)
PAL: }

end of comments, if comment shall extend over several lines or
comment will be used as separator in NC set

; start of comments (single-line comment)

CR
(end of line)

end of comment (single-line comment)

ISO: [
PAL: (

start of argument at functions or bracketing of terms

ISO:]
PAL:)

end of argument at functions or bracketing of terms

+ sign at decimal numbers
or
arithmetical operator: addition

- sign at decimal numbers
or
arithmetical operator: subtraction

* arithmetical operator: multiplication

/ arithmetical operator: division
or
set skip character, if a N-word follows

& Boolean operation: AND

isel-ProNC Programming Instruction

23

| Boolean operation: OR

^ Boolean operation:
ANTIVALENZ respectively EXCLUSIV OR:
a ^ b = (not a & b) | (a & not b)

<

relational operator: lower as

>

relational operator: greater as

!=

relational operator: unequal

== relational operator: equal

:

character to selection of a coordinate component of a Q-variable
or of a symbolic frame

/

character for set skip

=

value assignment to coordinate address letters at indexing axis-
addressing

Table 2.4: Special characters and its meaning in ProNC

2.5 Subprograms

The subprogram technique in ProNC is realised due to the guideline in DIN 66025.

please refer to: Section 3.1.7 Subprogram technology

subprogram-... ISO syntax PAL syntax

-start (declaration) %L100 %SUBR100

-end (declaration) M17 RETURN

-call (activation) L100 SUBR100

Table 2.5: Subprogram declaration and -activation

isel-ProNC Programming Instruction

24

3 ProNC language description

3 ProNC language description

In the application programs (ISO-source program or PAL-source program, in the following
shortly called source program), processed in ProNC, an explicit declaration part is not
necessary for constants or variables. It exists only the demand, that in every source program
the subprograms must be defined in front of the main program(part).

Program text: The program text consists of program lines.

To make an explicit reference to the terminology of informatics (data processing), in this
documentation will be differed between program lines,

z which are typical for programming numerical controlled plants (toll machines, handling systems):
These program lines are NC sets with a structure defined for example in DIN 66025 / ISO 6983.

z which are typical for the programming language of data processing:
These program lines are described as instructions.

Program lines: Program lines can be NC-sets or instructions.

Therefore every source program consists of a sequence of NC sets and / or instructions.

NC sets: NC sets correspond in their syntax to the rules of DIN66025.

Instructions:

Instructions can be:

• an empty program line, this is an empty instruction
• a comment line, this is also an empty instruction
• every program line, that is not a NC-set, is an instruction

The structure of a set was defined in section 2.2 Structure of a NC set of this documentation.
In the section 3.1 Commands by DIN 66025 all available NC-sets and the relevant commands
are summarized.

All usable instructions in ProNC are described in section 3.2 Instructions.

To a better understanding of the both section 3.1 and 3.2 please read the following
statements:

Program text:

�

For all source programs in ProNC the rule is valid: program text can
be entered with any notation (uppercase or lowercase letter).

There is no difference between the key words
• EndFor,
• ENDFOR or
• endfor .

The compiler realizes an optional pre-processor run. During this run
all lowercase letters are converted into uppercase letters (outside any

isel-ProNC Programming Instruction

25

comments). This has the consequence, that also frame names like
Park Position, PARKPOSITION and park position are not
distinguished.

Within comments arbitrary characters may be used. Comments start
either with round or curly opening bracket (respectively { and end
with the closing round or curly bracket) respectively } or start with a
semicolon ; and end with the line end character CR (Carriage
Return). The special signs und their meaning will be defined in
section 2.4 Special signs.

NC-sets:

All NC-sets can start with a set number (N-word). This is also valid for
instruction of variables / parameter calculation. To distinction of
instructions to control the program process (e.g. FOR-loop) of NC-
sets at all loops and branches you must not use any set numbers
(N-words).

Variable:

�

The user of ProNC can carry out a very efficient and flexible
parameter calculation by the possibility to use variables (section
3.2.3). No complicated names/identifiers or declarations are needed
for simple, implicit variables (P-, Q- or R-variable), as it is usual at
higher programming languages of the EDP. In ProNC a variable
starts with the uppercase letter (address letter) P, R or Q, followed by
a natural number n:

• P-variable: 0 <= n < 100 -> process variable
• Q-variable: 0 <= n < 500 -> frame variable
• R-variable: 0 <= n < 1000 -> real variable

Valid variable:

�

P0, P11, P99 are valid P-variables
R1, R222, R999 are valid R-variables
Q2, Q166, Q499 are valid Q-variables

Identifier to define
frame names:

�

In a ProNC application program identifiers are needed to name the
elements of the geometry file (frame file). The elements of the
geometry file are named frame. Therefore an identifier to name a
frame is called frame name.

Frame name:

�

A frame name consists of a minimum of 4 characters and a
maximum of 20 characters. It will be demanded, that the first four
characters of a frame name must be capital letters. The fifth and all
following characters can be numbers, uppercase letters and also the
underscore "_" in any order.

Valid / invalid frame
name:

�

valid frame name:
MAXI, ABCD, ABSO, MAXIMUM, MINIMUM, ELVIRA123

invalid frame name:
111, AB1, 12_NORM, _1, N_1, A, AN3_ANTON

isel-ProNC Programming Instruction

26

Natural number:

�

Natural numbers are used to define the key number, e. g. at all G-
commands and M-commands. They mustn`t have a plus or minus
sign.

example:

valid natural number:
100, 200, 300, 1

invalid natural number:

+100, +200, +300, +1_

Hexadecimal
numbers:

�

Natural numbers can also be defined hexadecimal. In this case the
prefix 0X or $ must be set in front of the string.
As postfix the character H or h can be used.
At least one and maximum eight signs from following character set
must follow the prefix:
• the numbers 1,2,3,4,5,6,7,8,9,0
• the lowercase letters a, b, c, d, e, f
• the capital letters A, B, C, D, E, F

This rule can be described with the regular term:

0x([0-9a-fA-F]){1,8}
or
$([0-9a-fA-F]){1,8}
or
([0-9a-fA-F]){1,8} H

example:

• valid hexadecimal numbers:

0x1234, 0xaa, 0xAA, $Ff, 12345678H, abcdH

• invalid hexadecimal numbers:

0a1234, xaa, 0yAA, 0x_Ff, 0x123456789, 0xabxycd

please refer to: Section 3.2.2.2 Functions

Binary numbers:

�

A natural number can be written as binary number. The identification
of the numeric string bbbbbbbb as binary number is defined with the
letter B.
bbbbbbbbB b =[0,1]

example:

- 10101010B binary notation for the natural number 170
- 00000011B binary notation for the natural number 3

isel-ProNC Programming Instruction

27

Decimal numbers:

Decimal numbers to define coordinates, velocities, constants (direct
values for the assignment to R-variables) or arguments of functions
can be indicated in three different ways:

• as decimal number with whole and broken part,

e.g. 3.142 oder 0.142
• as decimal number without whole and with broken part,

e.g. .142
• as decimal number with whole and without broken part,

e.g. 3.

Key words (tokens):

�

Like in every programming language, keywords are also available in
ProNC, which define certain syntactic constructions in their structure.
These keywords (frequently also described as tokens in the usage of
computer science) are summarized next:

- instructions to control the program processing:
• FOR, ENDFOR
• WHILE, ENDWHILE
• DO, ENDDO
• REPEAT, UNTIL
• IF, ELSE, ENDIF
• SWITCH, CASE, ENDCASE, DEFAULT, ENDSWITCH

- for trigonometric functions:
• SIN, COS, TAN
• ASIN, ACOS, ATAN

- for real functions
• FABS
• SQR, SQRT
• FLOOR
• EXP
• LOG, LN
• POW

- for a waiting period
• TIME / DELAY

- for the circle number Pi
• Pi

Arithmetical und
Boolean terms:

Both arithmetical and Boolean terms are used at the parameter
calculation. A term is general a number, a variable or a combination
of variables and / or of numbers. Depending on the operation is an
arithmetical or a Boolean operation it will be called arithmetical or
Boolean term.

Instructions to control
the program
processing:

Using instructions to control the program processing (FOR-loop,
WHILE-loop, DO/REPEAT-loop) respectively using a program
branching (IF-construction, SWITCH-construction) conditions are
tested. Conditions are comparisons between arithmetical terms or
Boolean terms. A condition has always a so-called truth value:

isel-ProNC Programming Instruction

28

If the condition is filled, the truth value is 1 (TRUE) . If the condition is
not filled, the truth value is 0 (FALSE) .

Condition:

In the syntax notation the condition is written with lower-case letters.
That means, please write at the place of the grammatical
construction a syntactic faultless notation representing a condition.

Syntax notation for a
condition:

�

In the syntax-notation

IF condition
...
ELSE
...
ENDIF

condition is the word for a valid notation of a condition. The
condition can be for example:

R1 > R2

Then a syntactic correct program text would be e. g.:

IF R1 > R2
 N10 G1 G91 X100
ELSE
 N20 G1 G91 X-100
ENDIF

Instruction:

�

Instructions to control a program processing contain the word
instructions (written in lowercase letters) in the syntax notation. This
word instructions stands as an abbreviation for:
• empty instruction

(empty program line or comment line)
or
• NC set
or
• sequence of NC sets
or
• instruction
or
• sequence of instructions

please refer to:
Section 3.2.3 Assignments to control the program process

Nested depth:

�
It gets obvious, that an instruction for the control of the program flow
(e.g. FOR loop) can contain instructions again.
Because this instruction can be a FOR loop again, in ProNC a
nesting of instructions is possible. To limit the administration effort of
this nestings, the so-called nested depth is limited on five.

isel-ProNC Programming Instruction

29

In the following sections a uniform structure is used for the description of all NC sets
(words / commands within NC sets) or description of all instructions:

NC set:

Command by
ISO-syntax

Summary for the NC set Command by
PAL-syntax

Instruction:

Name of the
instruction

Summary for the instruction

� Syntax:

The syntax defines, how the construction (WORD / COMMAND or
INSTRUCTION) must be written in the application program text. It is
noted, which parameters, e.g. coordinates, variables or identifiers are
permitted within the construction.

 Hint to the notation in the syntax-field:

 Notation

Meaning

 [construction]?

the construction indicated in square brackets is
optional, i.e. it can be programmed once or left out

 [construction]* non, one or several repetitions of the defined
construction

 [construction]+

one or several repetitions of the defined
construction

 [construction]{m,n}

minimal m and maximum n repetitions of the
construction

� Declaration: The purpose, the task, the characteristics and / or the application of the

construction are explained as text.

� Example: The purpose, the task, the characteristics and / or the application of the
construction are explained with examples.

� Reference: It will be referred to a reference to related constructions.

isel-ProNC Programming Instruction

30

3.1 Commands by DIN 66025 in the NC set
3.1.1 Path commands

Fast velocity

The fast velocity will be defined in the initialization file of the motion
module (isel-Motion Control MCTL) or will be set with the command
FASTVEL in the application program (modal effect).

With fast velocity primarily positioning movements are programmed.
A positioning movement is e. g. a movement to the work piece zero
point before a processing or the movement to the park position after
a processing.

Processing velocity:

�

The processing velocity is defined in the initialization file of the motion
module (isel-Motion Control MCTL) or it is set up in the source
program with help of the F-command.

With processing velocity technological movements are primarily
programmed, e. g. the milling of an edge, the welding of a seam or
the drilling of a hole. All these movements have one community: a
motion segment (a straight line or a circle) or a trajectory is driven.

Interpolation plane:

The statement of the interpolation plane is only useful at Cartesian
systems, because only at Cartesian systems the motion module
carries out a circle command.

The interpolation plane fixes, in which plane the next circle is driven:
X Y plane or X Z plane or Y Z plane.
The specification of the interpolation plane has no influence for the
linear interpolation at Cartesian kinematics (straight commands G0 |
FASTABS or G1 | MOVEABS or G10 | FASTFRAME or G11 |
MOVEFRAME), because this interpolation is always a 3D
interpolation.

Zero point shift:

�

A zero point shift during the technological processing (milling, drill,
stick, weld and others) serves primarily to fix the zero point of the
work piece coordinate system opposite the zero point of the machine
coordinate system.

The zero point shift is used at handling systems to open a so-called
local coordinate system, e.g. the reference system of an image
recognition system, in the global coordinate system of the handling
system.

isel-ProNC Programming Instruction

31

3.1.1.1 Overview Path commands in ProNC
ISO-

command

Meaning

PAL-command

G0 Motion with fast velocity

FASTABS
FASTREL

G1 Linear interpolation at Cartesian Kinematics

S-PTP-motion at non Cartesian Kinematics

MOVEABS
MOVEREL

G2 Circle interpolation clockwise
 at Cartesian Kinematics

CWABS
CWREL

G3 Circle interpolation counter clockwise

 at Cartesian Kinematics
CCWABS
CCWREL

G4 Dwell / Wait / Delay

TIME

DELAY

G10

G11

Motion with fast velocity
in connection with a frame variable Q0 ... Q499

Motion with processing velocity
in connection with a frame variable Q0 ... Q499

FASTFRAME

MOVEFRAME

G12

Helix clockwise

CWHLXABS
CWHLXREL

G13 Helix counter clockwise CCWHLXABS

CCWHLXREL

G17
G18
G19

Definition of the interpolation plane (X-Y-plane)
Definition of the interpolation plane (X-Z-plane)
Definition of the interpolation plane (Y-Z-plane)

PLANE XY
PLANE XZ
PLANE YZ

G53
G54
G55
G56

Zero point shift deactivate
Zero point shift 1 activate
Zero point shift 2 activate

Set the work piece zero point on the current position

WPCLEAR
WPREG1
WPREG2
WPZERO

G60
G64

Switch off explicit path mode (path end)
Switch on explicit path mode (path start)

PATHEND
PATH

G70
G71

Definition of measure for translatory axis: inch
Definition of measure for translatory axis: mm

INCH
METRIC

G74

Reference run REF

G75 Teach-In: The window „current geometry file: ...“ can
activated during the automatic mode

TEACH

G80 Define parameter of a drilling cycle

DrillDef

isel-ProNC Programming Instruction

32

G81
G82
G83
G84

Simple drilling
Drilling with dwell

Drilling in operating mode countersick
Drilling in operating mode break chip

DrillN
DrillT
DrillD
DrillB

G90
G91

Coordinate statements are absolute statements
 (absolute dimension)

Coordinate statements are incremental statements
 (incremental dimension)

ABS
REL

G92

G93

Set memory
 (work piece zero-point register 1)

Set memory
 (work piece zero-point register 2)

WPREG1WRITE

WPREG2WRITE

G98 Parameter input for technological variable (R-variable)

PARAMETER

G99 Text output into the status line

TYPE

Table 3.1.1: Path commands in ProNC (Overview)

isel-ProNC Programming Instruction

33

3.1.1.2 Positioning with fast velocity

G0-command

Motion with fast velocity FASTABS-command
FASTREL-command

� Syntax: [set number]?

[further command:
[set number]?
[further command:

 G17, G18, G19,
G70, G71]*
G0

PLANE XY, PLANE XZ, PLANE YZ,
INCH, METRIC]*
FASTABS or FASTREL

 [target-coordinates]{1,6}
[F-command]?
[S-command]?

[target-coordinates]{1,6}
[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: Cartesian Kinematic:

positioning motion with fast velocity:
z the fast velocity is defined in the initialisation file of the motion module
or by the command FASTVEL
z at least one coordinate statement must be available in the NC set
z at most six coordinate statements may be available in the NC set
z if an absolute dimension is adjusted (G90 | ABS) the target coordinates
refer to the current zero point of the work piece coordinate system
z if incremental dimension (G91 | REL) is adjusted, the target coordinates
refer to the current start point
z the unit of the target position (X, Y, Z) is millimetre [mm], for rotatory axes
(A, B, C) grad [°]

� Example:

Cartesian Kinematics:
; absolute motion to the target point with the coordinates
; (100mm, 200mm, 300mm) with fast velocity:

 ISO: N200 G00 G90 X100.0 Y200.0 Z300.0
 PAL: N200 FASTABS X100.0 Y200.0 Z300.0

�
Cartesian Kinematics:
; relative motion of the X-axis about 10 mm, of the Y-axis about
; 20 mm and the Z-axis about 30 mm, viewing from the current start point
; with fast velocity:

 ISO: N200 G00 G91 X10.0 Y20.0 Z30.0
 PAL: N200 FASTREL X10.0 Y20.0 Z30.0

non-Cartesian Kinematics:
; absolute motion to the target point with the values:
; C-axis: 100 grad Z-axis: 180 mm
; B-axis: 45.0 grad A-axis: -45.0 grad
; with fast velocity:

 ISO: N100 G00 G90 C100.0 Z180.0 B45.0 A-45.0
 PAL: N100 FASTABS C100.0 Z180.0 B45.0 A-45.0

� Reference: G1, G10,

G11, G70, G71,
G90, G91

MOVEABS, FASTFRAME,
MOVEFRAME, INCH, METRIC,
ABS, REL

isel-ProNC Programming Instruction

34

3.1.1.3 Linear interpolation

G1-command

Linear interpolation at Cartesian
Kinematics
S-PTP-motion at non Cartesian
Kinematics

MOVEABS-command
MOVEREL-command

� Syntax: [set number]?

[further command:
[set number]?
[further command:

 G17, G18, G19,
G70, G71]*
G1

PLANE XY, PLANE XZ, PLANE YZ,
INCH, METRIC]*
MOVEABS or MOVEREL

 [target coordinates]{1,6}
[F-command]?
[S-command]?

[target coordinates]{1,6}
[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: Cartesian Kinematics: Linear interpolation with processing velocity

non-Cartesian Kinematics: Positioning motion with processing
velocity
z the processing velocity can be defined with help of a F-command in the
current NC-set or the processing velocity, defined in the previous NC-set, is
valid
z the fast velocity is defined in the initialisation file of the motion module
or by the command FASTVEL
z at least one coordinate statement must be available in the NC set
z at most six coordinate statements may be available in the NC set
z if an absolute dimension is adjusted (G90 | ABS) the target coordinates
refer to the current zero point of the workpiece coordinate system
z if incremental dimension (G91 | REL) is adjusted, the target coordinates
refer to the current start point
z the unit of the target position (X, Y, Z) is millimetre [mm], for rotatory axes
(A, B, C) grad [°]

� Example:

�
Cartesian Kinematics (XYZ):
; straight in the space to the absolute target point with the
; coordinates (100 mm, 200 mm, 300 mm) with
; processing velocity:

 ISO: N100 G1 G90 X100.0 Y200.0 Z300.0
 PAL: N100 MOVEABS X100.0 Y200.0 Z300.0

Cartesian Kinematics (XYZ):
; straight in the space to the absolute target point with the coordinates
; X-IST + 10 mm, Y-IST + 20 mm, Z-IST – 30 mm
; with processing velocity:

 ISO: N200 G1 G91 X10.0 Y20.0 Z-30.0
 PAL: N200 MOVEREL X10.0 Y20.0 Z-30.0
 non-Cartesian Kinematics:

; absolute motion to the target point with the values:
; C-axis: 100 grd Z-axis: 180 mm
; B-axis: 45.0 grd A-axis: -45.0 grd
; with fast velocity:

 ISO: N100 G01 G90 C100.0 Z180.0 B45.0 A-45.0
 PAL: N100 MOVEABS C100.0 Z180.0 B45.0 A-45.0

� Reference: G0, G10,

G11, G70, G71,
G90, G91

FASTABS, FASTFRAME,
MOVEFRAME, INCH, METRIC,
ABS, REL

isel-ProNC Programming Instruction

35

3.1.1.4 Circular interpolation clockwise

G2-command

Circular interpolation cw
(clockwise) at Cartesian Kinematics

CWABS-command
CWREL-command

� Syntax: [set number]?

[further command:
[set number]?
[further command:

 G17, G18, G19,
G70, G71]*
G2

PLANE XY, PLANE XZ, PLANE YZ,
INCH, METRIC]*
CWABS or CWREL

 [target coordinates]{1,3}
[center coordinates]{1,3}
[F-command]?
[S-command]?

[target coordinates]{1,3}
[center coordinates]{1,3}
[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: Cartesian Kinematics:

circle / arc of a circle in the active interpolation plane
clockwise with definition of the center coordinates

z this command can only be used for Cartesian plants
z at least one target position value and the corresponding center
coordinate have to be defined:

X -> I, Y -> J, Z -> K
z the definition of target coordinates can be absolute (G90 | ABS) or
relative (G91 | REL)
z the definition of center coordinates are always specified relatively to the
start point
z the unit of the target position is millimetre [mm]
z the direction of rotation is defined so, that the third coordinate runs
always from positive to negative, if you look on the interpolation plane

Hint:
The X-Y-plane as interpolation plane is selected with the command
G17 | PLANE XY ; now please look into negative Z-direction on a
"phantom-clock" in this plane, that direction of rotation agrees with the
direction of rotation of the circle.

� Example:

; Semicircle clockwise in the X-Y-plane:
; start point:

(X_start,Y_start)=(0,0)
; endpoint:

 (X_end,Y_end)=(100,0)

; processing velocity: 50 mm/sec:
 ISO: N10 G17 ; define the interpolation plane

N20 G0 G90 X0 Y0 ; move to start point
N30 G2 X100 I50 F50 ; drive circle

 PAL: N10 PLANE XY ; define interpolation plane
N20 FASTABS X0 Y0 ; move to start point
N30 CWABS X100 I50 F50 ; drive circle

isel-ProNC Programming Instruction

36

Hint:
the center coordinates (X_center, Y_center) result always by addition of the
I- respectively J-values to the start values of the circle (X_A, Y_A):

X_center := X_A + I
Y_center := Y_A + J

Consequently the I- , J- and K-coordinates are always relative statements.

(X_start,Y_start)=(0,0)

(X_end,Y_end)=(100,0)

X

Y

(X_center,Y_center)=(50,0)

� Example:

; Circle arc clockwise in the X-Y-plane:
; start point:

(X_start,Y_start)=(0,0)
; end point:

 (X_end,Y_end)=(200,200)

; processing velocity 75 mm/sec:

 ISO: N10 G17 ; define the interpolation plane
N20 G0 G90 X0 Y0 ; move to the start point
N30 G2 X200 Y200 I200 J0 F75 ; drive circle

 PAL: N10 PLANE XY ; drive the interpolation plane
N20 FASTABS X0 Y0 ; move to start point
N30 CWABS X200 Y200 I200 J0 F75 ; drive circle

(X_start,Y_start)=(0,0)

X

Y (X_end,Y_end)=(200,200)

(X_center,Y_center)=(200,0)

� Reference: G3, G17, G18,

G19, G90, G91
CCWABS, PLANE XY, PLANE XZ,
PLANE YZ, ABS, REL

isel-ProNC Programming Instruction

37

3.1.1.5 Circular interpolation counter clockwise

G3-command

Circular interpolation ccw
(counter clockwise) at Cartesian
Kinematics

CCWABS-command
CCWREL-command

� Syntax: [set number]?

[further command:
[set number]?
[further command:

 G17, G18, G19,
G70, G71]*
G3

PLANE XY, PLANE XZ, PLANE YZ,
INCH, METRIC]*
CCWABS or CCWREL

 [target coordinates]{1,3}
[center coordinates]{1,3}
[F-command]?
[S-command]?

[target coordinates]{1,3}
[center coordinates]{1,3}
[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: Cartesian Kinematics:

circle / arc of a circle in the active interpolation plane
clockwise with definition of the center coordinates

z this command can only be used for Cartesian plants
z at least one target position value and the corresponding center
coordinate have to be defined:

X -> I, Y -> J, Z -> K
z the definition of target coordinates can be absolute (G90 | ABS) or
relative (G91 | REL)
z the definition of center coordinates are always specified relatively to the
start point
z the unit of the target position is millimetre [mm]
z the direction of rotation is defined so, that the third coordinate runs
always from positive to negative, if you look on the interpolation plane

Hint:
The X-Y-plane as interpolation plane is selected with the command
G17 | PLANE XY ; now please look into negative Z-direction on a
"phantom-clock" in this plane, that direction of rotation agrees with the
direction of rotation of the circle.

� Example:

�
; Quarter circle counterclockwise in the XY-plane:
; startpoint:

(X_start,Y_start)=(600,0)
; endpoint:

(X_end,Y_end)=(300,300)

; processing velocity 66 mm/sec:

 ISO: N10 G17 G90
N20 G0 X600 Y0 ; move to start point
N30 G3 X300 Y300 I-300 F66 ; drive circle

 PAL: N10 PLANE XY ABS
N20 FASTABS X600 Y0 ; move to start point
N30 CCWABS X300 Y300 I-300 F66 ; drive circle

isel-ProNC Programming Instruction

38

Hint:
The absolute coordinates of the circle center in the following drawing result
out of the addition of the specified I-coordinate value –300 in the set N30 to
the start value of the X-coordinate: 600 -300 = 300.

Because the center coordinate Y_center = 0 does not change opposite the
start value Y_start = 0 , the definition of the J-position value in the NC-set
can escape.

X

Y (X_end,Y_end)=(300,300)

(X_start,Y_start)=(600,0)

(X_center,Y_center)=(300,0)

� Example:

�
; Circle counterclockwise in the X-Y-plane:
; startpoint: (X_start,Y_start)=(120,180)
; radius. 50 mm
; endpoint: (X_end,Y_end)=(120,180)

; processing velocity 110 mm/sec:

 ISO: N10 G17 G90
N20 G0 X120 Y180
N30 G3 X120 Y180 I50 J0 F11

 PAL: N10 PLANE XY ABS
N20 FASTABS X120 Y180
N30 CCWABS X120 Y180 I50 J0 F11

X

Y

(X_start,Y_start)=(X_end,Y_end)=(120, 180)

(X_center,Y_center)=(170,180)

� Reference: G2, G17, G18,

G19, G90, G91
CWABS, PLANE XY, PLANE XZ,
PLANE YZ, ABS, REL

isel-ProNC Programming Instruction

39

3.1.1.6 Dwell time

G4-command Dwell time TIME-command
DELAY-command

� Syntax: [set number]? [set number]?
 G4 dwell time TIME dwell time

DELAY dwell time

� Explanation: Definition of a dwell time in an application program

z dwell time is a natural number

z the smallest naming unit is 1 millisecond

z the range of values of dwell time is the data type unsigned long (32 Bit);
 that means, the maximum dwell time can be (2 to the 32 - 1) * 0,001 sec

� Example:

; 1000 msec = wait 1 sec:

 ISO: N10 G4 1000
 PAL: N10 TIME 1000

�
; the dwell time is determined by the current contents of the R-variable:

 ISO: N20 G4 R1
 PAL: N20 TIME R1

isel-ProNC Programming Instruction

40

3.1.1.7 Fast velocity with statement of frame

G10-command

Motion with fast velocity in
combination with a frame variable
Q0 ... Q499 or with an indexing
Q-variable or a frame name

FASTFRAME-command

� Syntax: [set number]?

[further command:
[set number]?
[further command:

 G17, G18, G19,
G70, G71]*
G10 q_variable or
G10 Q r_variable or
G10 frame_name

PLANE XY, PLANE XZ, PLANE YZ,
INCH, METRIC]*
FASTFRAME q_variable or
FASTFRAME Q r_variable or
FASTFRAME frame_name

 [S-command]? [S-command]?
 [M-command]* [miscellaneous command]*

� Explanation: Positioning motion with fast velocity, without explicit target

coordinates, but with a frame variable (Q-variable) or an indexing Q-
variable or a frame name.

z the target statement is always absolute
z the fast velocity is defined in the initialisation file of the motion module or
by the command FASTVEL
z the frame variables must initialised in the initialisation part of the
application program

 ATTENTION

Past a G10-command | FASTFRAME-command the absolute measure
is always active, even if ahead of a G10-command | FASTFRAME-
command a relative measure (incremental measure) was defined by a
G91-command | REL-command.

� Example:

�
; the Q-variable Q1 is initialised:
N10 Q1 = START

; positioning motion in fast velocity to the position, which is actually stored
; in the Q-variable Q1:

 ISO: N20 G10 Q1
 PAL: N20 FASTFRAME Q1

; indexing of Q-variable:
 ISO: N100 G10 QR5 ; synchron-PTP-motion to the

 ; Q-target point, that index is just in R5
 PAL: N100 FASTFRAME QR5 ;synchron-PTP-motion to the

 ; Q-target point, that index is just in R5

; direct statement of the frame name in the command:
 ISO: N20 G10 PARK_POSITION
 PAL: N20 FASTFRAME PARK_POSITION

 � Reference: G11 MOVEFRAME
 Section 3.2.1.2: Q-variable

Section 3.2.2.4: Assignments

isel-ProNC Programming Instruction

41

3.1.1.8 Processing velocity with statement of frame

G11-command

Motion with processing velocity in
combination with a frame variable
Q0 ... Q499 or with an indexing
Q-variable or a frame name

MOVEFRAME

� Syntax: [set number]?
[further command:

[set number]?
[further command:

 G17, G18, G19,
G70, G71]*
G11 q_variable or
G11 Q r_variable er
G11 frame_name

PLANE XY, PLANE XZ, PLANE YZ,
INCH, METRIC]*
MOVEFRAME q_variable or
MOVEFRAME Q r_variable or
MOVEFRAME frame_name

 [F-command]?
[S-command]?

[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: Positioning motion with processing velocity, without explicit target

coordinates, but with a fame-variable (Q-variable) or an indexing
Q-variable or a frame name.

z the target statement is always absolute
z the processing velocity can be defined with F-commands or VEL-
commands in the actual NC set or the processing velocity, defined in the
previous set, is valid
z the frame variables must initialised in the initialisation part of the
application program

 ATTENTION

Past a G11-command | MOVEFRAME the absolute measure is always
active, even if ahead of a G11-command | MOVEFRAME a relative
measure (incremental measure) was defined by a G91-command |
REL-command.

� Example:

;the Q-variable Q2 is initialised:
;N10 Q2 = ENDE

; positioning motion with defined processing velocity to the position, which is
; actually stored in the Q-variable Q2:

 ISO: N20 G11 Q2 F100.1
 PAL: N20 MOVEFRAME Q2 F100.1

; indexing of Q-variables:

� ISO: N100 G11 QR6 ; synchron-PTP-motion to the
 ; Q-target point, that index is just in R6

 PAL: N100 MOVEFRAME QR6 ; synchron-PTP-motion to the
 ; Q-target point, that index is just in R6

; direct statement of the frame name in the command::

 ISO: N20 G11 PARK_POSITION
 PAL: N20 MOVEFRAME PARK_POSITION

� Reference: G10 FASTFRAME
 Section 3.2.1.2: Q-variable

Section 3.2.2.4: Assignments

isel-ProNC Programming Instruction

42

3.1.1.9 Helix clockwise

G12-command

Helix interpolation CW
(clockwise) at Cartesian Kinematics

CWHLXABS-command
CWHLXREL-command

� Syntax:

[set number]?
[further command:

[set number]?
[further command:

 G70, G71]*
G12

INCH, METRIC]*
CWHLXABS or CWHLXREL

 rotation angle W
[target coordinates]{1,3}
[center-coordinates]{1,3}
[F-command]?
[S-command]?

rotation angle W
[target coordinates]{1,3}
[center-coordinates]{1,3}
[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation:

Helix motion to an end point (target coordinates), around a radius center
(center coordinates) with the angle of rotation W clockwise.

z target coordinates statements can be made absolute (G90 | ABS) or
 relative (G91 | REL)
z center point coordinate statements are always relative according to the
 start point
z the statement of the rotation angle defines the number of rotations;
 360° defines 1 rotation

� Example:

�

; Helix drive with a whole angle of 1800 grad
; (it corresponds to 5 full circles) with a radius = 8 mm

 ISO: N10 G17 ; fix interpolation plane
N20 G0 G90 X8 Y0 Z0 ; run to start point
N30 G12 W1800 X8 Z40 I-8 J0 ; drive helix

 PAL: N10 PLANE XY ; fix interpolation plane
N20 FASTABS X8 Y0 Z0 ; run to start point
N30 CWHLXABS W1800 X8 Z40 I-8 J0 ; drive helix

� Reference: G13, G2, G3 CCWHLXABS, CWABS, CCWABS

isel-ProNC Programming Instruction

43

3.1.1.10 Helix counter clockwise

G13-command

Helix interpolation CCW (counter
clockwise) at Cartesian Kinematics

CCWHLXABS-command
CCWHLXREL-command

� Syntax:

[set number]?
[further command:

[set number]?
[further command:

 G17, G18, G19,
G70, G71]*
G13

INCH, METRIC]*
CCWHLXABS or CCWHLXREL

 rotation angle W
[target coordinates]{1,3}
[center-coordinates]{1,3}
[F-command]?
[S-command]?

rotation angle W
[target coordinates]{1,3}
[center-coordinates]{1,3}
[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation:

Helix motion to an end point (target coordinates), around a radius center
(center coordinates) with the angle of rotation W counter clockwise.

z target coordinates statements can be made absolute (G90 | ABS) or
 relative (G91 | REL)
z center point coordinate statements are always relative according to the
 start point
z the statement of the rotation angle defines the number of rotations;
 360° defines 1 rotation

� Example:

; thread milling in the pre-drilled hole
; radius = 5 mm, helix with 10 full circle

� ISO: N10 G17 ; fix interpolation plane
N20 G0 G90 X5 Y0 Z-10 ; run to start point
N30 G13 W3600 X5 Y0 Z0 I-5 J0 ; drive helix

 PAL: N10 PLANE XY ; fix interpolation plane
N20 FASTABS X5 Y0 Z-10 ; run to start point
N30 CCWHLXABS W3600 X5 Y0 Z0 I-5 J0 ; drive helix

� Reference: G12, G2, G3 CWHLXABS, CWABS, CCWABS

isel-ProNC Programming Instruction

44

3.1.1.11 All motion commands

all motion
commands

programmable abort of motions in automatic mode

� Syntax: An input can be programmed with definition of the port and the bit number

in any program line, which causes a motion of the axes in the mechanical
system (all G0-, G1-, G2/G3-, G10- and G11-commands | FASTABS-,
MOVEABS-, CWABS/CCWABS-, FASTFRAME- and MOVEFRAME-
commands).
If during the motion to the programmed target point a low high flank or high
low flank of the corresponding input is carried out, the motion will be
aborted.

� Explanation:

ProNC has the ability to abort motions in automatic mode, if a programmed
binary input is activated and to continue with the command, following in the
application program.
This functionality can be used if ProNC instructs a motion control (MCTL)
for servo plants (numerical axes with DC-/AC-servomotors, isel-Servo-
Controller CV with slot card UPMV4/12 or isel-CAN-Controller). That
means, the programmable abort of motions in automatic mode is not usable
for following axes with stepper motor:

- plants with Controller C116-4 / C142-4
- all plants of CPM-line (CPM 2018, CPM 3020, CPM 4030)
- plants of GFM-line (GFM 4433)

� Example:

; the motion to the target point X=100mm, Y=200mm
; is aborted, if the binary input E1.1
; is activated during the motion (low-high-edge):

 ISO: N10 G1 X100 Y200 E1.1
 PAL: N10 MOVEABS X100 Y200 E1.1

; the motion to the target position in Q5
; is aborted, if the binary input E4.7
; is activated during the motion (low-high-edge):

 ISO: N10 G10 Q5 NOT E4.7
 PAL: N10 FASTFRAME Q5 NOT E4.7

isel-ProNC Programming Instruction

45

3.1.1.12 Definition of interpolation plane

G17-command

G18-command

G19-command

Definition of interpolation plane
(X-Y-plane)
Definition of interpolation plane
(X-Z-plane)
Definition of interpolation plane
(Y-Z-plane)

PLANE XY-command

PLANE XZ-command

PLANE YZ-command

� Syntax: [set number]? [set number]?
 G17 oder G18 oder

G19
[further command: G53,
G54, G55, G56,
G70, G71, G90, G91]*

PLANE XY or PLANE XZ or PLANE
YZ
[further command: WPCLEAR,
WPREG1, WPREG2, WPZERO,
INCH, METRIC, ABS, REL]*

 [F-command]?
[S-command]?

[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: select interpolation plane:

G17 | PLANE XY: the X-Y-plane is selected
z all previous circle commands (G2 or G3 | CWABS or CCWABS) refer to
the X-Y-plane
z the G17-command | PLANE XY-command is default in every application
program; that means, this command does not have to be programmed

G18 | PLANE XZ: the X-Z-plane is selected
z all previous circle commands (G2 or G3 | CWABS or CCWABS) refer to
the X-Z-plane

G19 | PLANE YZ: the Y-Z-plane is selected
z all previous circle commands (G2 or G3 | CWABS or CCWABS) refer to
the Y-Z-plane

� Example:

; the X-Y-plane is selected:

 ISO: N10 G17
 PAL: N10 PLANE XY

; the X-Z-plane is selected:
 ISO: N10 G18
 PAL: N10 PLANE XZ

; the Y-Z-plane is selected:
 ISO: N10 G19
 PAL: N10 PLANE YZ

� Reference: G2, G3

CWABS, CCWABS

isel-ProNC Programming Instruction

46

3.1.1.13 Set up zero point

G53-command
G54/G55-
command
G56-command

Zero point shift deactivate
Zero point shift 1 / 2 activate

Set up work piece zero point on the
actual position

WPCLEAR-command
WPREG1/WPREG2-
command
WPZERO-command

� Syntax: [set number]? [set number]?
 G53 or G54 or

G55 or G56
[further command: G17,
G18, G19,
G70, G71, G90, G91]*

WPCLEAR or WPREG1 or
WPREG2 or WPZERO
[further command: PLANE XY,
PLANE XZ, PLANE YZ,
INCH, METRIC, ABS, REL]*

 [F-command]?
[S-command]?

[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: G53 | WPCLEAR: zero point shift deactivate

G54 | WPREG1 – zero point shift 1 activate:
the actual zero point of the workpiece coordinate system
is shifted absolutely about the values in the zero point register 1 opposite
the zero point of the machine coordinate system

G55 | WPREG2 - zero point shift 2 activate:
the actual zero point of the workpiece coordinate system
is shifted absolutely about the values in the zero point register 2 opposite
the zero point of the machine coordinate system

G56 | WPZERO: a new zero point is set up on the actual position

� Example:

; the shift of the work piece zero point, defined with the command G54 |
WPREG1 or G55 | WPREG2 is cancelled or the zero point, installed with
the command G56 | WPZERO , will be deleted

 ISO: N10 G53
 PAL: N10 WPCLEAR

; install a new work piece zero point with help of the zero point register 1:
 ISO: N20 G54
 PAL: N20 WPREG1

; install a new work piece zero point with help of the zero point register 2:
 ISO: N30 G55
 PAL: N30 WPREG2

; install a new work piece zero point on the actual position:
 ISO: N40 G56
 PAL: N40 WPZERO

� Reference: G92, G93 WPREG1WRITE, WPREG2WRITE

isel-ProNC Programming Instruction

47

3.1.1.14 Path motion

G60-command

G64-command

Path motion switch off,

Path motion switch on

PATHEND-command

PATH-command

� Syntax: [set number]? [set number]?
 G64 or G60 PATH or PATHEND

� Explanation: z The user has two possibilities to realize the continuous path mode (path

motion):

1. Possibility:
If the configured motion control has the ability of an online path mode, an
activated button in the dialog window Processing causes the wanted path
mode.
That means, all successive motion segments (G1, G2, G3, G11 |
MOVEABS, MOVEREL, CWABS, CWREL, CCWABS, CCWREL,
MOVEFRAME)
will be summarized to a continuous path.

2. Possibility
Are some successive motion segments to be driven in a user program and
the button "Path mode" is not activated, the motion segments have to be
bracketed with the commands G64/G60 | PATH/PATHEND.

z The calculation of the velocity profile about all motion segments which
shall be summarized to a path, carries out by the motion control during the
processing of the user program in real time (look ahead); thereby the
variable concept is usable complete, because the values of R-variable will
be always processed correctly.

The summary of motion segments to a path is carried out by "bracketing"
with the commands G64 | PATH (marking the start of a trajectory driving
with path velocity) and G60 | PATHEND (marking the end of a trajectory
driving with path velocity).

z All programmed motion segments between G64 | PATH and G60 |
PATHEND are summarized to a current path. The command G64 | PATH
introduces the path motion. A programmed F-command defines the path
velocity for the whole path segment, several F-commands in several
segments causes several path velocities during a „connected“ path motion.

z The G60-command | PATHEND-command defines the end of a path
(trajectory) in the source program.

isel-ProNC Programming Instruction

48

� Example:

�
; the target points, stored in the Q-variable Q1 to Q4 are summarized to a
; path:
%L200
; subprogram to demonstration of path mode (CP):
; -> milling with path velocity of 10 mm/sec:
; path mode switch on:

 ISO: N5 G99 path mode switch on ...
N1 G64
N10 G11 Q1 F10.0
N20 G11 Q2
N30 G11 Q3
N40 G11 Q4
N50 G60
N60 G99 path mode switch off ...
N70 M17

 PAL: N5 TYPE path mode switch on ...
N1 PATH
N10 MOVEFRAME Q1 F10.0
N20 MOVEFRAME Q2
N30 MOVEFRAME Q3
N40 MOVEFRAME Q4
N50 PATHEND
N60 TYPE path mode switch off ...
N70 RETURN

� Hint:

Path mode is possible at the motion control for IMS6-Controller, the Servo-
Card UPMV 4/12 respectively CAN-Controller.

isel-ProNC Programming Instruction

49

3.1.1.15 Definition of measure

G70-command

G71-command

Definition of measure for
translatory axes: inch
Definition of measure for
translatory axes: mm

INCH-command

METRIC-command

� Syntax: [set number]? [set number]?
 G70 or G71

[further command: G17,
G18, G19,
G53, G54, G55,
G90, G91]*

INCH or METRIC
[further command: PLANE XY,
PLANE XZ, PLANE YZ,
WPCLEAR, WPREG1, WPREG2,
ABS, REL]*

 [F-command]?
[S-command]?

[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: G70 | INCH:

The measure inch is assigned to all coordinate statements for linear axes.

G71 | METRIC:
The measure mm is assigned to all coordinate statements for linear axes.

� Example:

�
Cartesian Kinematics (XYZ):
; straight line in space to the absolute target point with the
; coordinates (100 inch, 200 inch, 300 inch) with
; processing velocity:

 ISO: N100 G70 G1 X100.0 Y200.0 Z300.0
 PAL: N100 INCH MOVEABS X100.0 Y200.0 Z300.0

Cartesian Kinematics (XYZ):
; straight line in space to the target point with the coordinates
; X-IST + 10mm, Y-IST + 20 mm, Z-IST - 30mm
; with processing velocity:

 ISO: N200 G91 G71 G1 X10.0 Y20.0 Z-30.0
 PAL: N200 MOVEREL METRIC X10.0 Y20.0 Z-30.0

non-Cartesian Cinematic with 3 rotatory axes (e. g. Scara Robot):
; absolute motion to the target point with the values:
; foot turning: 100 grad vertical motion: 180 inch
; elbow joint: 45.0 grad hand turning: -45.0 grad
; with fast velocity:

 ISO: N100 G70 G0 C100.0 Z180.0 B45.0 A-45.0
 PAL: N100 INCH FASTABS C100.0 Z180.0 B45.0 A-45.0

� Reference: G0, G1,

G2, G3
FASTABS, MOVEABS,
CWABS, CCWABS

isel-ProNC Programming Instruction

50

3.1.1.16 Reference run

G74-command Reference run REF-command

� Syntax: [set number]? [set number]?
 [further command: G17,

G18, G19,
G70, G71, G90, G91]*
G74 [address letter]?
[M-command]*

[further command: PLANE XY,
PLANE XZ, PLANE YZ,
INCH, METRIC, ABS, REL]*
REF [address letter]?
[miscellaneous command]*

� Explanation: Implementation of a reference run:

• address letter = {X, Y, Z, A, B, C} for axis system 1
• address letter = {X2, Y2, Z2, A2, B2, C2} for axis system 2
(that means, the address letter is an element of the defined quantity)

• using the G74-command | REF-command without argument, all axes are
synchronized in the order:

Z-axis « Y-axis « X-axis « A-axis « B-axis « C-axis.

• after a reference run the motion control module is reset, that means, a
possible defined zero point was deleted and all initialization settings are
valid (e.g. processing / fast velocity).

� Example:

�
; reference run for all axis with the velocity defined in the initialization file
; of the motion control module

 ISO: N10 G74
 PAL: N10 REF

; reference run with just one axis:
 ISO: N10 G74 X ; reference run of X-axis

N20 G74 C ; reference run of C-axis
 PAL: N10 REF X ; reference run of X-axis

N20 REF C ; reference run of C-axis

� Reference: G70, G71, G90, G91 INCH, METRIC, ABS, REL

isel-ProNC Programming Instruction

51

3.1.1.17 Teach

G75-command programmable correction of axis
positions

TEACH-command

� Syntax: [set number]? [set number]?
 G75 TEACH

� Explanation: With the command G75 | TEACH the window actual geometry file: ...

can be activated during the run time of the user program.

With this function corrections of axis positions / Teach-In (a new input or
update of geometry information of the current geometry file) can be done
online without leaving the automatic mode.

The window actual geometry file: ... is left with OK or CANCEL, after
that the user program will be continued directly with the command /
instruction, following G75 | TEACH.
The current geometry file is located in the directory
CNCWorkbench\NCProg\Frame and has the same file name like the
current ISO respectively PAL user program.
Please pay attention to the characteristic, that just the file extension
(ISO: name.iso | PAL: name.pal) is replaced with the typical extension fra
for a geometry file.
That means, if you process the PAL user program ABC.PAL, you can also
use the geometry file ABC.FRA.
If you process with several user programs with one geometry file, please
use the standard geometry file stdframe.fra in the directory
\CNCWorkbench\Bin.

� Example:

�
;Teach-In

 ISO: N10 G75
 PAL: N10 TEACH

� Reference:

Operating Instruction:
5.7.3.9 Menu Control - Manual movement
5.7.3.10 Menu Control - Setup machine positions
2.2.2. The geometry file

isel-ProNC Programming Instruction

52

3.1.1.18 Drilling cycle define

G80

Definition of a drilling cycle DRILLDEF

� Syntax: [set number]? [set number]?
 G80 DRILLDEF

 CY: Drilling cycle

 1 = single drilling
 2 = countersick
 3 = break chip
PL: Plane
 0 = XY
 1 = XZ
 2 = YZ
DI: Direction
 0 = standard
 1 = inverse

 RF: reference height (mm)
 DE: depth (mm)
 TI: time (s)
 VE: processing velocity (mm/s)
 VF: fast velocity (mm/s)
 FI: first increment drill depth (mm)
 OT: further increment drill depth (mm)
 IC: decrease of increment drill depth (mm)
 RE: increment retreat (mm)
 LE: retreat plane out of drill hole (mm)
 SE: security height (mm)

� Explanation:

z all drilling parameters for the drilling command DRILL are defined
z drilling parameter are modal, that means the parameter are valid so long
as they will be set again to another value
z at the beginning of the program standard parameters can be defined,
single parameters can be modified immediately before the DRILL command

 CY =1 Drilling cycle - single drilling

isel-ProNC Programming Instruction

53

� Explanation:

CY = 2 Drilling cycle - clear out

� Explanation: CY = 3 Drilling cycle - break chip

� Example:

�
; CY: drilling cycle = 1 (single drilling)
; PL: plane = 0 (XY)
; DI: direction = 0 (Standard)
; RF: reference height = 1 mm
; DE: depth = 4 mm
; TI: delay after reaching the depth = 20 s
; VE: velocity = 3 mm/s
; VF: fast velocity = 20 mm/s
; FI: first incremental depth = 4 mm
; OT: further increment drill depth = 10 mm
; IC: decrease of increment drill depth = 7 mm
; RE: increment retreat = 4 mm
; LE: retreat plane out of drill hole = 3 mm
; SE: security height = 5 mm

 ISO: N10 G80 CY1 PL0 DI0 RF1 DE4 TI20 VE3 VF20 FI4 OT10 IC7

RE4 LE3 SE5

 PAL: N10 DrillDef CY1 PL0 DI0 RF1 DE4 TI20 VE3 VF20 FI4 OT10 IC7

RE4 LE3 SE5

� Reference: G81, G82, G83, G84

DrillN, DrillT, DrillD, DrillB

isel-ProNC Programming Instruction

54

3.1.1.19 Start drilling cycle

G81
G82
G83
G84

Single drilling
Drilling with dwell
Drillling (mode countersick)
Drilling (mode break chip)

DrillN
DrillT
DrillD
DrillB

� Syntax: [set number]? [set number]?
 G81 or G82 or G83 or G84 DrillN or DrillT or DrillD or

DrillB
 coordinates {x,y} coordinates {x,y}

 ISO: G81: Single Drilling

G82: Drilling with delay
G83: Drilling mode countersick
G84: Drilling with break chip

 PAL: DrillN: Single Drilling

DrillT: Drilling with dwell
DrillD: Drilling mode countersick
DrillB: Drilling with break chip

� Explanation:

z start of drilling cycle
z the required parameters for the drilling process have to be defined in the
command G80 | DrillDef .
z according to the identification in the DRILL command (G81, G82, G83,
G84 | DrillN, DRILLT, DRILLD, DRILLB) the values are used out of the
definition with G80 | DrillDef

� Example:

�
; single drilling at position X=20, Y=100

 ISO: N10 G81 X20 Y100
 PAL: N10 DRILLN X20 Y100

� Reference:

G80

DrillDef

isel-ProNC Programming Instruction

55

3.1.1.20 Coordinate statement

G90-command

G91-command

Coordinate statements are
absolute statements (absolute
measure)
Coordinate statements are
relative statements (incremental
measure)

ABS-command

REL-command

� Syntax: [set number]?

[further command:
[set number]?
[further command:

 G17, G18, G19,
G53, G54, G55,
G70, G71]*
G90 or G91

PLANE XY, PLANE XZ, PLANE YZ,
WPCLEAR, WPREG1, WPREG2,
INCH, METRIC]*
ABS or REL

 [F-command]?
[S-command]?

[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: G90 | ABS: all target coordinates are absolute statements (absolute

measure)

G91 | REL: all target coordinates are relative statements (incremental
measure)

� Example:

�
Cartesian Kinematics (XYZ):
; straight line in space to the absolute target point with the
; coordinates (100 mm, 200 mm, 300 mm) with
; current velocity:

 ISO: N100 G01 G90 X100.0 Y200.0 Z300.0
 PAL: N100 MOVEABS X100.0 Y200.0 Z300.0

Cartesian Kinematics (XYZ):
; straight line in space to the target point with the coordinates
; X-START + 10mm, Y-START + 20 mm, Z-START - 30mm
; with current velocity:

 ISO: N200 G01 G91 X10.0 Y20.0 Z-30.0
 PAL: N200 MOVEREL X10.0 Y20.0 Z-30.0

� Reference: G0, G1,

G2, G3
FASTABS, MOVEABS,
CWABS, CCWABS

isel-ProNC Programming Instruction

56

3.1.1.21 Set memory

G92-command

G93-command

Set memory (work piece zero point
register 1)
Set memory (work piece zero point
register 2)

WPREG1WRITE-command

WPREG2WRITE-command

� Syntax: [set number]?

[further command:
[set number]?
[further command:

 G17, G18, G19,
G70, G71, G90, G91]*
G92 or
G93

PLANE XY, PLANE XZ, PLANE YZ,
INCH, METRIC, ABS, REL]*
WPREG1WRITE or
WPREG2WRITE

 [target coordinates]{1,6} or
Frame-name
[F-command]?
[S-command]?

[target coordinates]{1,6} or
Frame-name
[F-command]?
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: G92| WPREG1WRITE: set zero point register 1

with an ensuing G54-command | WPREG1-command a new zero point shift
can be activated; the absolute values for each coordinate are written into
the so-called zero-point-register 1 and this shift is delivered with the
following G54-command | WPREG1-command to the motion control

G93| WPREG2WRITE: set zero point register 2

with an ensuing G55-command | WPREG2-command a new zero point shift
can be activated; the absolute values for each coordinate are written into
the so-called zero-point-register 2 and this shift is delivered with the
following G55-command | WPREG2-command to the motion control

� Example:

�
; set zero point shift register 1 (the coordinates of the zero point are directly
defined in the command):

 ISO: N10 G92 X100 Y200 Z300
 PAL: N10 WPREG1WRITE X100 Y200 Z300

; zero point shift activate:
 ISO: N20 G54
 PAL: N20 WPREG1

 ; set zero point shift register 2 (the coordinates of the zero point are defined

; in a frame with a frame name in the current geometry file):

 ISO: N10 G93 NULLPUNKT1 ; load register 2
 N20 G55 ; activate zero point

 PAL: N10 WPREG2WRITE NULLPUNKT1 ; load register 2
 N20 WPREG2 ; activate zero point

� Reference: G53, G54, G55,

G56
WPCLEAR, WPREG1, WPREG2,
WPZERO

isel-ProNC Programming Instruction

57

3.1.1.22 Manipulation of technology variables

G98-command Command to manipulation of
technology variables
(R-variable)

PARAMETER-command

� Syntax: [set number]? [set number]?
 G98 PARAMETER

� Explanation:

�

z if an input or an update of R-variables (technology variables) shall be
carried out in a user program in a certain constellation, then this necessary
interaction can be programmed with a G98 command | PARAMETER
command

z the following three activities follows in temporal order during the program
execution, when the commands G98 | PARAMETER will be carried out:
� interrupt of program processing
� activation of dialog box to display the current values respectively to
change values of technology variables
� return to the interpreter mode and program continuation

The G98-command | PARAMETER-command can also be used, to wait for
a keyboard input, when the user file is processing. If the operator presses
the ESC key during the program processing the program will be continued
after the activated G98-command | PARAMETER-command.

� Example:

�
ISO: IF R1 == 100

 N5 G98 ; input of new technology values
ENDIF

; wait on the ESC key on he keyboard:
N100 G98

 PAL: IF R1 == 100

 N5 PARAMETER ; input of new technology values
ENDIF

; wait on the ESC key on he keyboard:
N100 PARAMETER

� Reference:

Section 3.1.2.16 Dialog field to assign a value to a R-variable

isel-ProNC Programming Instruction

58

3.1.1.23 Text output

G99-command Text output into the status line

TYPE-command

� Syntax: [set number]? [set number]?
 G99 text TYPE text

� Explanation: text: arbitrary ASCII-text, at most 70 signs long

z the text, following the command G99 | TYPE will be provided in the status
line (this is the screen line above the Windows Task bar) as program
information during the program processing
Old text or program information will be overwritten.

� Example: ; output of an operator request:

IF E1.1
; the test, if a clamping device is closed, was positive:
; no text output !

� ISO: ELSE
 G99 please close the clamp device !
ENDIF

 PAL: ELSE
 TYPE please close the clamp device !
ENDIF

; text output, that an edge is milling:

 ISO: N100 M3 ; spindle on
N110 G99 ; edge is milling ...
N120 G1 X100 ; the milling process

 PAL: N100 SCLW ; spindle on
N110 TYPE ; edge is milling ...
N120 MOVEABS X100 ; the milling process

isel-ProNC Programming Instruction

59

3.1.2 Miscellaneous commands
In the following table all miscellaneous commands, used in ProNC, are summarized:

Miscellaneous

command

Meaning

Miscellaneous
command

M0 Programmed program interruption (abort)

ABORT

M1 Programmed program interruption (stop)

QUIT

M3 Spindle switch on (clockwise)

SCLW
Spindle Cw

M4 Spindle switch on (counter clockwise)

SCCLW

Spindle Ccw

M5 Spindle switch off

SOFF
Spindle off

M8/M9 Coolant on/off

Coolant on/off

M10/M11 Workpiece clamp on/off

WpClamp on/off

 Pump on/off Pump on/off

 Lamp on/off Lamp on/off

 Periphery option 1 on/off
Periphery option 2 on/off

Poption 1 on/off
Poption 2 on/off

Hand mode off/on HOFF/HON

 Test-mode off/on TOFF/TON

M17

Return from subprogram RETURN

M30 Program end

PROGEND

 Get input/output GetPort
GetP

GetBit

Mpby Set output SetPort
SetP

SetBit
SetAnalog
SetPWM

 Get actual value

PosA.n
GetDate
GetTime
GetValue

Table 3.1.2: Miscellaneous functions in ProNC (overview)

isel-ProNC Programming Instruction

60

3.1.2.1 Program interruption

M0-command

M1-command

Programmed program
interruption (abort)
Programmed program
interruption (stop)

ABORT-command
QUIT-command

� Syntax: [set number]? [set number]?
 M0 or M1 ABORT or QUIT

� Explanation: M0 | ABORT: Program processing is aborted

M1 | QUIT: Program processing is paused

z using the M0-command | ABORT-command the program processing will
be aborted in every case after an operator receipt
z using the M1-command | QUIT-command the program processing can be
aborted after an operator input (ESC key on the keyboard) or it will be
continued (CR key on the keyboard)

� Example:

; if the binary input E1.1 is set, the actual user program shall be aborted:

 ISO: IF E1.1
 M0 ; unconditional program abort
ENDIF

� PAL: IF E1.1
 ABORT ; unconditional program abort
ENDIF

; if the binary input E2.2 is set and the variable R1 has the value 100
; the actual user program can be aborted or continued:

 ISO: IF E2.2
 IF R1 == 100
 M1 ; program pause with the possibility to continue
 ENDIF
ENDIF

 PAL: IF E2.2
 IF R1 == 100
 QUIT ; program pause with the possibility to continue
 ENDIF
ENDIF

isel-ProNC Programming Instruction

61

3.1.2.2 Program beginning, program end

%
M30-command

Program beginning
Program end

ProgBegin
ProgEnd

� Syntax: % or M30 ProgBegin or ProgEnd

� Hint: The program beginning marks always the entry of the main program.

In front of the main program subprograms can be declared. These
subprograms can be called in the main program.

� Explanation: % | ProgBegin: program beginning

M30 | ProgEnd: program end

� Reference: Section 3.1.7 Subprogram technology

isel-ProNC Programming Instruction

62

3.1.2.3 Spindle commands

M3-command

M4-command

M5-command

Spindle switch on (clockwise
clw)
Spindle switch on (counter
clockwise cclw)
Spindle switch off

SCLW-command

SCCLW-command

SOFF-command

� Syntax:

[set number]?
[further command:

[set number]?
[further command:

 [coordinates]{0,6}
[F-command]?
[S-command]?

[coordinates]{0,6}
[F-command]?
[S-command]?

 M3 or M4 or M5 SCLW or SCCLW or SOFF

� Explanation:

M3 | SCLW: Spindle switch on
z clw - clockwise
M4 | SCCLW: Spindle switch on
z cclw – counter clockwise

z the number of revolutions of the spindle is defined with the S-command
z although the M command is located at the end of the NC set, the spindle
turn on is started before an axis motion starts
z using the commands M3 | SCLW and M4 | SCCLW a defined turn on
period of the working spindle is waited, if a starting delay/run-up period was
defined in the initialization file of the selected spindle.DLL (SETUP dialog)

M5 | SOFF: Spindle switch off

z using the command M5 | SOFF a defined turn off of the working spindle
is waited, if a turn off delay was defined in the initialization file of the
selected spindle.DLL (SETUP dialog)

please refer to:
Section 3.1.5 S-command

� Hint:

�

Equal to the described syntax you can also use the following notation:

isel-ProNC Programming Instruction

63

Spindle command Spindle

� Syntax: [set number]?

 Spindle CW, RPM, [CCW], [RPS], [ON], [OFF], [TIME milliseconds]

� Explanation:

Spindle CW: Spindle on clockwise

Spindle CCW: Spindle on counter clockwise

Spindle ON: Spindle on in the last declared mode (cw or ccw)

Spindle OFF: Spindle off

Parameter RPM: Define spindle speed in revolutions per minute
Parameter RPS: Define spindle speed in revolutions per second

A delay in the program for the turn on /off of the spindle to rated speed can
be defined with the parameter TIME.

� Example:

; spindle switch on clockwise with spindle speed 5.000 revolutions/min,
; wait for 5 seconds
N10 Spindle CW RPM5000 TIME 5000

isel-ProNC Programming Instruction

64

 3.1.2.4 Coolant

M8-command/
M9-command

Coolant on
Coolant off

COOLANT ON
COOLANT OFF

� Syntax:

[set number]?
[further command:

[set number]?
[further command:

 [coordinates]{0,6}
[F-command]?
[S-command]?

[coordinates]{0,6}
[F-command]?
[S-command]?

 M8 or M9 COOLANT ON or COOLANT OFF

� Explanation: M8 | COOLANT ON: Coolant on
M9 | COOLANT OFF: Coolant off

z although the M command is located at the end of the NC set, the
command is started before an axis motion starts

� Hint: The assignment, which binary output the coolant switches on or off, is

carried out in the dialog Setup - Control - I/O-modules - Extended settings -
- Peripherals.

please refer to:
Operating Instruction: 5.8.7.3 Menu Control - Input-/ Output module

3.1.2.5 Workpiece clamp

M10
M11

Work piece clamp on
Work piece clamp off

WPCLAMP ON
WPCLAMP OFF

� Syntax: [set number]? [set number]?

 M10

M11
WPCLAMP ON
WPCLAMP OFF

� Explanation: activate / deactivate a work piece clamping equipment

M10 | WPCLAMP ON: work piece clamp on
M11 | WPCLAMP OFF: work piece clamp off

� Hint: The assignment, which binary output the coolant switches on or off, is

carried out in the dialog Setup - Control - I/O-modules - Extended settings -
- Peripherals.

please refer to:
Operating Instruction: 5.8.7.3 Menu Control - Input-/ Output module

isel-ProNC Programming Instruction

65

3.1.2.6 Pump

 Pump on
Pump off

PUMP ON
PUMP OFF

� Syntax: [set number]?

 PUMP ON

PUMP OFF

� Explanation: switch on / switch off of a vacuum equipment or a hydraulic pump

PUMP ON: Pump on
PUMP OFF: Pump off

� Hint: The assignment, which binary output the pump switches on or off, is carried

out in the dialog Setup - Control - I/O-modules - Extended settings --
Peripherals.

please refer to:
Operating Instruction: 5.8.7.3 Menu Control - Input-/ Output module

3.1.2.7 Lamp

 Lamp on
Lamp off

LAMP ON
LAMP OFF

� Syntax: [set number]?

 LAMP ON

LAMP OFF

� Explanation: switch on / off a lamp / illumination

LAMP ON: lamp on
LAMP OFF: lamp off

� Hint: The assignment, which binary output the lamp switches on or off, is carried

out in the dialog Setup - Control - I/O-modules - Extended settings --
Peripherals.

please refer to:
Operating Instruction: 5.8.7.3 Menu Control - Input-/ Output module

isel-ProNC Programming Instruction

66

3.1.2.8 Periphery option

 Periphery option1 on / off
Periphery option2 on / off

POPTION1 ON / OFF
POPTION2 ON / OFF

� Syntax: [set number]?

 POPTION1 ON/POPTION1 OFF

POPTION2 ON/POPTION2 OFF

� Explanation: switch on / switch off an optional device (possibility to connect a user

specific hardware to a corresponding output port)

POPTION1 ON: Periphery device 1 on
POPTION1 OFF: Periphery device 1 off

POPTION2 ON: Periphery device 2 on
POPTION2 OFF: Periphery device 2 off

� Hint: The assignment, which binary output the optional device switches on or off,

is carried out in the dialog Setup - Control - I/O-modules - Extended
settings -- Peripherals.

please refer to:
Operating Instruction: 5.8.7.3 Menu Control - Input-/ Output module

isel-ProNC Programming Instruction

67

3.1.2.9 Hand-/Test-Mode

 Hand mode switch off
/switch on
Hand mode switch off
/switch on

HOFF/HON-command

TOFF/TON-command

�Explanation:

The hand mode respectively the test mode can be switched on or switched
off in the user program.
The switched on hand mode causes, that the motor amplifier will be
switched current free.

The test mode is to be switched on by program, if e. g. a 4th axis (A-axis)
shall carry out a reference run without the existence of a reference switch.

� Hint: Not all motor amplifiers/motion controls offer the possibility, to switch on or

switch off a hand mode or a test mode.

� Example:
� PAL: HOFF: Hand mode switch off

HON: Hand mode switch on
TOFF: Test mode switch off
TON: Test mode switch on

3.1.2.10 Get inputs / outputs

 Get inputs- /outputs

GetPort / GetP

� Syntax: [set number]?

 r_variable=GetPort Ep/

r_variable=GetP Ep
r_variable=GetPort Ap /
r_variable=GetP Ap

� Explanation:

Read the value either of a logical input port p (parameter Ep) or the current
value of an output port p (parameter Ap).

� Example:

�

N10 R11=GetPort E1 ;read the input port 1
N15 R12=GetPort A1 ;read the current value of the output port 1
or
N10 R11=GetP E1 ;read the input port 1
N15 R12=GetP A1 ;read the current value of the output port 1

isel-ProNC Programming Instruction

68

3.1.2.11 Set outputs

Mpby-command

Set output port

(y=1| SETB) set respectively
(y=0| RESB) reset

SetPort / SetP

SetBit
ResBit

� Syntax: [set number]? [set number]?

[Mpby]+

SetPort Ap=constant
SetP Ap=constant
SetBit Ap.b=y
SetBit Ap.b ; set always
ResBit Ap.b ; reset always

� Explanation: Mpby: general M-command to set / reset binary outputs:

z the letter p represents the number 1, 2 ... 8;
this number defines the corresponding output port;
z an output port includes always the eight output bits 1 to 8
z the letter b represents the number 1, 2 ... 8,
this number defines the corresponding bit in the output port;
z the output ports correspond to the P-variables with an even index:
.

 ISO: M1by refers to output port 1 = P0
M2by refers to output port 2 = P2
M3by refers to output port 3 = P4
M4by refers to output port 4 = P6
M5by refers to output port 5 = P8
M6by refers to output port 6 = P10
M7by refers to output port 7 = P12
M8by refers to output port 8 = P14

z the letter y represents a number 0 or 1,
this number defines, if the bit selected with b, shall be set (y = 1) or shall
be reset (y = 0)

 PAL: SetBit / ResBit A1.b refers to the output port 1 = P0
SetBit / ResBit A2.b refers to the output port 2 = P2
SetBit / ResBit A3.b refers to the output port 3 = P4
SetBit / ResBit A4.b refers to the output port 4 = P6
SetBit / ResBit A5.b refers to the output port 5 = P8
SetBit / ResBit A6.b refers to the output port 6 = P10
SetBit / ResBit A7.b refers to the output port 7 = P12
SetBit / ResBit A8.b refers to the output port 8 = P14

please refer to:
Section 3.2.1.1: P-variable

isel-ProNC Programming Instruction

69

� Example:

�

; set the output port 1 - binary notation:
SetPort A1=11110000B
; set the output port 1 - hexadecimal notation:
SetPort A1=0xF0
or
SetPort A1= $F0
or
SetPort A1=F0H

please refer to:
Section 3: ProNC language description

� Example:

�
ISO: ; set bit 5 in the output port 1:

N10 M151

; reset bit 7 in the output byte 2:
N20 M270

 PAL: ; set bit 5 in the output byte 1:

N10 SetBit A1.5; or:
N10 SetBit A1.5=1

; reset bit 7 in the output byte 2:
N20 ResBit A2.7; or:
N20 SetBit A2.7=0

isel-ProNC Programming Instruction

70

3.1.2.12 Set Analog-/PWM-output

 Set Analog output,
Set PWM output

SetAnalog
SetPWM

� Syntax: [set number]?

SetAnalog Ak = voltage value [mV]
SetPWM Ak = pulse width [%]

� Explanation:

z Set the value of the analog output with the submitted channel number.
The unit of the analog value is millivolt. The chosen analog output must be
declared in the extended IO administration.

z Set the value of the PWM signal with the submitted channel number k
[1 ...4]. The unit of the pulse width is percent. The chosen PWM channel
must be declared in the extended IO administration.

� Example:

�

; set the analog output 1 to 2,5 volt
N10 SetAnalog A1=2500

; set the pulse width on PWM output 1 to 50%
N10 SetPWM A1=50 ;pulse duty ratio 50%

3.1.2.13 Current axis position

 Current axis in
axis system 1 or 2

POSn.A

� Syntax: [set number]?

r_variable = POSn.A

n=[1,2]
A=[X, Y, Z, A, B, C]

� Explanation:

Function to query the current position of the axis A of the axis system n.
The axes systems 1 and 2 can be indexed. The letter A can be replaced
with the axis marker X, Y, Z, A, B, C.

� Example:

�

R11=POS1.X ;R11 contains the position X in the axis system 1
R12=POS1.Y ;R12 contains the position Y in the axis system 1
R21=POS2.X ;R21 contains the position X in the axis system 2

isel-ProNC Programming Instruction

71

3.1.2.14 Current system time

 Current system time

GetTime

� Syntax: [set number]?

r_variable0=GetTime r_variable1
r_variable2 r_variable3

� Explanation:

Query the current system time. After the call of this function these values
are available in the R-variables:

r_variable1: = hour
r_variable2: = minute
r_variable3:= second

� Example:

�

N10 R0=GetTime R11 R12 R13; R11=hour, R12=minute, R13=second

� Hint:

Only if after finishing the command GetTime R0 owns the value 0, the
values in R11 (hour), R12(minute) and R13 (second) are correctly.

3.1.2.15 Current date

 Current date

GetDate

� Syntax: [set number]?

r_variable0=GetDate r_variable1
r_variable2 r_variable3

� Explanation:

Query the current date. After the call of this function these values are
available in the R-variables:

r_variable1: = year
r_variable2: = month
r_variable3: = day

� Example:

N10 R0=GetDate R1 R2 R3; R1=year, R2=month, R3=day

� Hint:

Only if after finishing the command GetDate R0 owns the value 0, the
values in R1 (year), R2(month) and R3 (day) are correctly.

isel-ProNC Programming Instruction

72

3.1.2.16 Dialog field to assign a value to a R-variable

 Dialog field to assign a value to

a R-variable

GetValue

� Syntax:

[set number]?

r_variable=GetValue "<message
text>"

� Explanation: Display of a dialog field: The user can enter a value, this value is assigned
to a R-variable.

R20=GetValue "Please enter the number of the desired repetitions"

isel-ProNC Programming Instruction

73

3.1.3 FastVel-command

 Fast velocity in mm/sec

FASTVEL-command

� Syntax:

[set number]?
[further command]*
[coordinates]{0-6}
FastVel velocity
[S-command]?

[set number]?
[further command]*
[coordinates]{0-6}
Fastvel velocity
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: z velocity is a decimal number

z with this command the fast velocity will be defined
z the unit of the fast velocity is always mm / sec at Cartesian plants;
 if the first axis at the plant is a rotary axis the unit is grad / sec
z at plants with rotary axes and at least with one linear axis the adjustment
velocity of the rotary axes will be calculated by the interpolator according to
the "Leading velocity“ of the linear axis.

� Example:

�

; adjust fast velocity 100 mm/sec:

 ISO: N10 G0 X100 Y200 Z300 FASTVEL 100.0
 PAL: N10 FASTABS X100 Y200 Z300 FASTVEL100.0

� Reference: G0 FASTABS

isel-ProNC Programming Instruction

74

3.1.4 F-command

F-command

Processing velocity in
mm/sec

VEL-command

� Syntax: [set number]?

[further command]*
[coordinates]{0-6}
F velocity
[S-command]?

[set number]?
[further command]*
[coordinates]{0-6}
VEL velocity
[S-command]?

 [M-command]* [miscellaneous command]*

� Explanation: z velocity is a decimal number

z with this command the processing velocity will be defined
z the unit of the processing velocity is always mm / sec at Cartesian plants
z plants with rotary axes and at least with one linear axis the adjustment
velocity of the rotary axes will be calculated by the interpolator according to
the "Leading velocity“ of the linear axis

� Example:

�
; adjust processing velocity 100 mm/sec:

 ISO: N10 G1 X100 Y200 Z300 F100.0
 PAL: N10 MOVEABS X100 Y200 Z300 VEL100.0

� Reference: G1, G2, G3

G11, G12, G13

MOVEABS, CWABS, CCWABS
MOVEFRAME, CWHLXABS,
CCWHLXABS

isel-ProNC Programming Instruction

75

3.1.5 S-command

S-command Spindle speed define in revolutions /min

� Syntax:

[set number]?
[further command]*
[coordinates]{0-6}
[F-command]?
S speed

[set number]?
[further command]*
[coordinates]{0-6}
[F-command]?
S speed

 [M-command]* [miscellaneous command]*

� Explanation: z the spindle speed is defined with this command:

spindle speed is a decimal number and has the unit revolutions per minute
z the direction of rotation of the spindle clw (clockwise) is defined with the
M-command M3 | SCLW.
z the direction of rotation of the spindle cclw (counter clockwise) is defined
with the M-command M4 | SCCLW.

� Reference: M3, M4, M5 SCLW, SCCLW, SOFF

isel-ProNC Programming Instruction

76

3.1.6 Tool change

T-command
T1-command
T2-command

Tool change GetTool
GetTool TC1
GetTool TC2

� Syntax:

[set number]?

[set number]?

 T tool number
T1=tool place
T2 =tool place

GetTool tool number
GetTool TC1 tool place
GetTool TC2 tool place

� Explanation:

z tool number {1-128}

z tool place {1-16}

z per tool changer (max. two) max.128 tools are configurable for at most
16 tool places

Using a tool number without the parameter TC1 respectively TC2 the tool
with the number, defined in the tool administration, will be changed.

Using the tool place and the further parameters TC1 or TC2 to define the
tool changer the tool will be fetched, deciding on the tool place in the
corresponding tool changer.
The tool administration will be avoided, if you use this command.

� Example:

; tool with the tool number 4, defined in the tool administration, is fetched

� ISO:
PAL:

N10 T 4
N10 GetTool 4

 ; tool from tool place 4 in the tool changer 1 is fetched

 ISO:

PAL:
N10 T1=4
N10 GetTool TC1 4

isel-ProNC Programming Instruction

77

3.1.7 Subprogram technology

Subprogram
technology:

With help of subprogram technology it enables to the user to create
and to test compact and easily comprehensible application programs
successfully .

The following boundary conditions have to be taken into account using the subprogram
technology in ProNC:

Declaration force of
subprograms:

�

Subprograms have to be first declared in the program text (to
declare) before they are called in the main program. The reason for
this is, that the compiler checks, if forbidden subprogram calls are
found in the application program. A forbidden subprogram call
happens, when the corresponding subprogram was not yet declared.

Subprograms can be nested . So It is possible, that in a subprogram another subprogram
is called.

Maximum nested
depth:

�

The maximum nested depth is defined with 10. The restriction on 10
is meaningful with safety and results only from the fact, that the stack
to the return addresses is limited to exactly this value.

3.1.7.1 Declaration subprogram

%L declaration Subprogram declaration

%SUBR declaration:

� Syntax: %L subprogram_number %SUBR subprogram_number

� Explanation: Subprogram declaration:

z a subprogram is declared (that means it is "agreed" or "announced")
z subprogram_number is a natural number
z the special sign % and the address letter L | Key word SUBR must
stand in front of the identification of a subprogram declaration
z the number of the subprogram (declared) serves for the clear
identification and may be found in a source program only once, (however, a
declared subprogram can be arbitrarily often called in a user program)
z each declared subprogram has to be completed with the command
M17 | RETURN

� Example:

�
ISO: ; the subprogram with the number 11 is declared

; and is completed with the according M17-command:
%L11

; set bit 1 in the output byte A1:
N10 M111

; wait 1 sec:

isel-ProNC Programming Instruction

78

N20 G4 1000

; reset bit 1 in the output byte A1:
N30 M110

; finish the subprogram:
N40 M17

 PAL: ; the subprogram with the number 11 is declared

; and is completed with the according RETURN-command:
%SUBR11

; set bit 1 in the output byte A1:
N10 SETB A1.1

; wait 1 sec:
N20 TIME 1000

; reset bit 1 in the output byte A1:
N30 RESB A1.1

; finish the subprogram:
N40 RETURN

� Reference: Subprogram call: L Subprogram call: SUBR

isel-ProNC Programming Instruction

79

3.1.7.2 Subprogram call

L-command Subprogram call (direct)
Subprogram call (indexed)

SUBR-command

� Syntax: direct subprogram call:

[set number]?
direct subprogram call:
[set number]?

 L subprogram_number SUBR subprogram_number
 indexed subprogram call:

[set number]?
indexed subprogram call:
[set number]?

 L r_variable SUBR_ r_variable

� Explanation: z a subprogram must be declared ("agreed") in front of its call (its

activation)

z the number of the subprogram serves for the clear identification, a
declared subprogram can be called in the (main) program in arbitrarily
many places

direct subprogram call:
z a subprogram is called directly as follows: After an optional set number
the address letter L | Key word SUBR, followed by a natural number, is
programmed in the main program or in another subprogram.

indexed subprogram call:
z a subprogram is called indexed, if after an optional set number the
address letter L | Key word SUBR, followed by a R-variable, will be
programmed in the user main program or in another subprogram
z indexed subprogram call increases the flexibility of the programming
considerable, because just that subprogram is activated, which number
agrees with the current content of the corresponding R-variable

� Example:

�
ISO: ; the subprogram with the number 5 is declared:

%L5 ; subprogram to grip
N10 M8 ; close gripper
N20 G4 1000 ; wait 1 sec until closed
N30 M17 ; return

; the subprogram with the number 6 is declared:
%L6 ; subprogram to clamp off
N10 M9 ; open gripper
N20 G4 2000 ; wait 2 sec, until opened
N30 M17 ; return

%100 ; start of the main program
N10 ...
N20 ...
N30 L5 ; activate subprogram 5
N40 ...
N50 L6 ; activate subprogram 6
N60 ...

; example to indexed subprogram call:
; the three subprograms %L10, %L11 und %L12 are declared:
%L10
N100 R1 = 1 R2 = 2 R3 = 3
N200 M17

isel-ProNC Programming Instruction

80

%L11
N100 R1 = 5 R2 = 6 R3 = 7
N200 M17
%L12
N100 R1 = 10 R2 = 11 R3 = 12
N200 M17
;
; in the main program a parameter input is made (with keyboard):
N5 G98
; then the R-variable R1 has the value of the wished
; subprogram number:
N10 LR1 ; the subprogram is activated, which
 ; subprogram number agrees just now with the
 ; current content of R-variable R1

 Example:

�
PAL: ; the subprogram with the number 5 is declared:

%SUBR5 ; subprogram to grip
N10 GCLOSE ; close gripper
N20 TIME 1000 ; wait 1 sec until closed
N30 RETURN ; return

; the subprogram with the number 6 is declared:
%SUBR6 ; subprogram to clamp off
N10 GOPEN ; open gripper
N20 TIME 2000 ; wait 2 sec until opened
N30 RETURN ; return

%100 ; start of the main program
N10 ...
N20 ...
N30 SUBR5 ; activate subprogram SUBR5
N40 ...
N50 SUBR6 ; activate subprogram SUBR6
N60 ...

; example to indexed subprogram call:
; the three subprograms %SUBR10, %SUBR11 and %SUBR12 are
; declared:
%SUBR10
N100 R1 = 1 R2 = 2 R3 = 3
N200 RETURN
%SUBR11
N100 R1 = 5 R2 = 6 R3 = 7
N200 RETURN
%SUBR12
N100 R1 = 10 R2 = 11 R3 = 12
N200 RETURN
;
; in the main program a parameter input is made (with key board):
N5 PARAMETER
; then the R-variable R1 has the value of the wished subprogram
; number
N10 SUBR_R1 ; this subprogram is activated, which
 ; subprogram number agrees just now with the
 ; current content of the R-variable R1

� Reference: Subprogram declaration: %L Subprogram declaration: %SUBR

isel-ProNC Programming Instruction

81

3.2 Instructions: Syntactic extensions to DIN 66025
3.2.1 Variables

In ProNC variables have an elementary importance for the possibility, to generate flexible
application programs. Variables represent the basis for the parameter calculation.

Variable:

A variable must be in the position to be named in the program text.
That means in an application program a variable is represented by a
name.

In ProNC very simple names are chosen for the available variables: a natural number n follows
a capital letter P, Q or R:
0 <= n < 100 at P, 0 <= n < 500 at Q, 0 <= n < 1000 at R.

No declaration force
for variables:

�

In ProNC variables don't have to be declared explicitly.
Therefore this isn't necessary because always one hundred
P-variables, five hundred Q-variables and one thousand R-variables
are available in every source program (the variables are declared
implicitly). The assignment of data types to certain variables, how it is
usual at programming languages in the EDP, you don`t need. The
data type defines always the range of values of a variable. In ProNC
fixed data types are assigned to the available variables:

Variable in ProNC fixed assigned data type

P-variable natural number:

memory volume: 8 bit = 1 byte
range of values: 0 to 255

R-variable

floating-point number:
memory volume: 8 byte = 64 bit
range of values: 11 bit exponent,
53 bit mantissa

Q-variable

structure of 12 floating-point numbers
(X, Y, Z, A, B, C for axis system 1,
 X2, Y2, Z2, A2, B2, C2 for axis system 2)

Table 3.2.1: Variables in ProNC and their range of values

During the run time of a user program a variable is realized always by a memory position and a
memory content.

Memory position:

Position: Where is the current value of the variable stored physically ?

Memory content:

Value: Which value does the variable just represent ?

isel-ProNC Programming Instruction

82

Therefore the value of a variable can be changed at any time (during the runtime of the user
program) or it can be assigned to another variable of the same type (valid for P- and R-variables).

Runtime of the user
program:

The run time is exactly the time, while the application program is
processed.

R-variables:

�
In ProNC the R-variables are the most important variables. With their
help it is possible, to carry out calculations and to store the results of
the calculations. To carry out decisions R-variables can be compared
with each other or with constants.
ProNC owns a basic quality: All available R-variables (R0 to R999)
can "submit" their current values as parameters to coordinates or F
commands. So an indirect value declaration is possible.

please refer to:
Section 3.2.2 Parameter calculation

� Example:

; NC set with direct statement of values:

 ISO: N10 G1 G90 X100 Y200 Z-50
 PAL: N10 MOVEABS X100 Y200 Z-50

�
; NC set with indirect statement of values with help of R-variables:

 ISO: N10 G1 G90 XR1 YR2 ZR3
 PAL: N10 MOVEABS XR1 YR2 ZR3

isel-ProNC Programming Instruction

83

3.2.1.1 P-variables

P-variables

� Syntax: P-variable_index

� Exlanation:

�

Process variables P0 to P99:

z 0 <= variable_index < 100

z Process variables have a value range 0 to 255 (0x00 to 0xFF)

z a P variable can be combined with help of Boolean operations with other
 P variables or with constants (natural numbers from 0 to 255 or
 hexadecimal numbers from 0x00 to 0xFF)

z the process variables with odd index (P1, P3, P5 to P15)
 represent at any time the current input ports I1, I2, I3 to I8:
 P1 = I1, P3 = I2, P5 = I3, P7 = I4, P9 = I5, P11 = I6, P13 = I7, P15 = I8

Please note:
P index for input port := I index * 2 - 1

with I index from 1 ... 8

z the process variables with even index (P0, P2, P4 to P14)
 represent at any time the current output ports O1, O2, O3 to O8:
 P0 = O1, P2 = O2, P4 = O3, P6 = O4, P8 = O5, P10 = O6, P12 = O7,
 P14 = O8

Please note:
P index for output port := O index * 2 - 2

with O index from 1 ... 8

� Example:

�
P33 (P-variables with index 33)
P66 (P-variables with index 66)
P99 (P-variables with index 99)

P0=11110000B ; write output port O1
P2=0xF0 ; write output port O2

� Reference: Section 3.2.1.3: R-variable

Section 3.2.2.3: Boolean expression

isel-ProNC Programming Instruction

84

3.2.1.2 Q-variables

Q-variables

� Syntax: Q-variable_index or QRvariable_index

� Explanation:

�

Q-variables own a variable index:
z 0 <= variable_index < 500
z Q-variables are initialised with frames, every frame has a name.

z Q-variables represents a structure, consisting of maximum 12 floating-
point numbers for the elements X ... C in the axis system 1 respectively
X2 ... C2 in the axis system 2

z with the following construction can be accessed to the structure elements
(the coordinate values of the axes):

Q-variable_index : axis_address letter

Each component of a Q-variable can be isolated with help of the axis
identifier (address letter):

Q-variable_index : X describes the X coordinate in the axis system 1
Q-variable_index : Y describes the Y coordinate in the axis system 1
Q-variable_index : Z describes the Z coordinate in the axis system 1
Q-variable_index : A describes the A coordinate in the axis system 1
Q-variable_index : B describes the B coordinate in the axis system 1
Q-variable_index : C describes the C coordinate in the axis system 1

Q-variable_index : X2 describes the X2 coordinate in axis system 2
Q-variable_index : Y2 describes the Y2 coordinate in axis system 2
Q-variable_index : Z2 describes the Z2 coordinate in axis system 2
Q-variable_index : A2 describes the A2 coordinate in axis system 2
Q-variable_index : B2 describes the B2 coordinate in axis system 2
Q-variable_index : C2 describes the C2 coordinate in axis system 2

the coordinate
values for the
axis system 1

the coordinate
values for the
axis system 2

Æ

Æ

Q1

Q1: X
Q1: Y
Q1: Z
Q1: A
Q1: B
Q1: C

Q1: X2
Q1: Y2
Q1: Z2
Q1: A2
Q1: B2
Q1: C2

Å

The structure of Q-variables
contains 12 components, each
6 for the axis system 1
respectively 6 for the axis
system 2

isel-ProNC Programming Instruction

85

z coordinate values, found out by Teach-In, can be stored into the frame
structure

z a Q-variable can be initialised with help of an assignment for example:
Q1=TARGET_POINT; TARGET_POINT is the name of a frame in the
current geometry file

You can access indirectly to the coordinate values of Q-variable. That
means, the index of the wished Q-variable can be defined with help of
a R-variable.

� Example:

�
Q33 (the Q-variable with the index 33)
Q66 (the Q-variable with the index 66)
Q99 (the Q-variable with the index 99)

; the value of the X coordinate within the structure of the
; Q-variable Q15 is assigned to the R-variable R14
; (valid for axis system 1):
N100 R14 = Q15:X
N200 R15=Q15:X2; for axis system 2

important detail:
; the value of the Y coordinate within the structure of the
; Q-variable, which index corresponds to the current value of R88
; is transferred to the R-variable R14:
N200 R14 = QR88:Y
To the fore going example the following explanation:
Hypothesis: R88 has just the value 5.
Result: R14 obtains the value, which is in the Q-variable Q5 at the position
of the Y-coordinate.

� Reference: Section 3.2.1.3: R-variable

Section 3.2.2.4: Assignments
Operating Instruction: Menu 2.2.2.2 Structure of geometry file

isel-ProNC Programming Instruction

86

3.2.1.3 R-variables

R-variables

� Syntax: R-variable_index or RRvariable_index

� Explanation:

�

Real-Variables R0 to R999:

z 0 <= variable_index < 1000

z real variables own the value range of a floating-point number (double
precision: 64 bit)

z in ProNC all 1000 available R-variables R0 to R999 are arranged as
array

z a R-variable can be combined with help of arithmetical operators
with other R-variables or with constants (decimal numbers)

z R-variables enables the data transfer to a coordinate, to a F- or a S-
command

z R-variables can be assigned with a component of a Q-variable (X, Y, Z,
A; B, C respectively X2, Y2, Z2, A2, B2, C2)

z you can access to R-variables indirectly, if you use as index of a
R-variable a further R-variable e. g. RR6

z the R-variables R101 to R106 represent at any time the current actual
position of the axes 1 to 6 in axis system 1:

1. axis : R101, 2. axis : R102, 3. axis : R103
4. axis : R104, 5. axis : R105, 6. axis : R106

respectively in axis system 2:

1. axis : R201, 2. axis : R202, 3. axis : R203
4. axis : R204, 5. axis : R205, 6. axis : R206

Please make sure, that in your user program those R-variables (R101 to
R106 or R201 to R206) aren't written.

� Example:

�

indexing of R-variables:

R33 (the R-variable with the index 33)
R66 (the R-variable with the index 66)
R99 (the R-variable with the index 99)

indirect access to R-variable:

N01 R1 = 1.11 R2 = 2.22 R3 = 3.33 R4 = 4.44 R5 = 5.55
...
N10 R10 = 4 ; the wished index to R10
N20 R11 = RR10 ; R11 is initialised with the value 4.44
N30 R10 = 5
N40 R11 = RR10 ; R11 is initialised with the value 5.55

isel-ProNC Programming Instruction

87

Initialisation of R-variables with the values from the variables file:

ProNC has the ability to write the current values of the R-variables R0 to
R299 into the special variable file "*.var" if the concrete user program is
exited or aborted.
That means after the abort of the user program example.pal the current
values of the R-variables R0 to R299 are written into the file example.var
(in the directory /CNCWorkbench/NCProg/Dest).
At the next start these variables will be read again out of the variable file,
converted and stored index-right in the working memory.

If you want to start your user program without the initialisation of the
variables R0 to R99 with the values from the file *.var, you can switch off
the corresponding control small box in the dialog NC Interpreter setup.

You can activate this dialog about the Menu Setup - Interpreter.

� Reference: Section 3.2.1.1: P-variable

Section 3.2.1.2: Q-variable
Section 3.2.1.4: Data transfer R-variable to coordinate
Section 3.2.2: Parameter calculation

isel-ProNC Programming Instruction

88

3.2.1.4 Data transfer R-variable to coordinate

Data transfer

� Syntax:

address letter R variable_index

� Explanation:

�

z address letter = {X, Y, Z, A, B, C}
that means, the address letter is an element of the specified quantity

z 0 <= variable_index < 1000

z an indirect value declaration at a coordinate word is possible, if instead of
a decimal number a R-variable is indicated

z the current value of the R-variable is assigned to the according
coordinate

� Example:

�
ISO: N10 R1 = 100

; the target point has the coordinate X=100mm, Y=200mm:
N20 G1 XR1 Y200

; the R-variable is calculated new:
N30 R1 = R1 + 50

; the target point has now the coordinate X=150mm,Y=200mm:
N40 G1 XR1 Y200

 PAL: N10 R1 = 100
; the target point has the coordinate X=100mm, Y=200mm:
N20 MOVEABS XR1 Y200

; the R-variable is calculated new:
N30 R1 = R1 + 50

; the target point has now the coordinate X=150mm,Y=200mm:
N40 MOVEABS XR1 Y200

� Reference:

G0, G1,
G2, G3

FASTABS, MOVEABS,
CWABS, CCWABS

 Section 3.1.4 F-command

isel-ProNC Programming Instruction

89

3.2.2 Parameter calculation

3.2.2.1 Arithmetical expressions

arith_expression arithmetical expressions

� Syntax: 1. arith_expression arith_operator arith_expression or
2. [arith_expression] or
3. function[arith_expression] or
4. r_variable or
5. real_number
6. symb_constant

� Explanation:

�

z an arithmetical expression can be combined with help of arithmetical
operators with a second arithmetical expression

z the result of this operation is an arithmetical expression again. The value
of this expression can be assigned to a R-variable.

z arith_operator is a sign from the quantity {+,-,*,/, MODULO}, so that
the arithmetical operations addition, subtraction, multiplication, division and
modulo division are possible

z to determine the priority, arithmetical expressions can be clipped; if an
arithmetical expression has no brackets, the rule is valid "point before line"

z an arithmetical expression can be an argument of a function
(trigonometric and real functions, please refer to the next section)

z an arithmetical expression can be a R-variable

z a real_number is a decimal number

z a symb_constant can be Pi = 3.142

z a symb_constant is a symbolic constant and can be a word out of the
quantity {IDOK, IDCANCEL, IDABORT, IDRETRY, IDIGNORE, IDYES,
IDNO}

The following values are assigned to these symbolic constants:

 symb_constant value

 IDOK 1

 IDCANCEL 2

 IDABORT 3

 IDRETRY 4

 IDIGNORE 5

 IDYES 6

 IDNO 7

isel-ProNC Programming Instruction

90

Example:

; 1. a complex arithmetical expression stands on the right side of the
assignment; the value of the arithmetical expression will be assigned to the
variable R10:

N10 R10 = PI / 4 * R11 * R11

; 2. using the bracket:

N20 R12 = [R13 + R14] * R16

; 3. an arithmetical expression as argument of the SIN-function:
N30 R13 = SIN [2.0 * R14]

; 4. R-variable results from the R-variable with
; sign inversion: this is an assignment

N40 R99 = 0.0-R98

; 5. R-variable results from a decimal number: this is an assignment:

N50 R33 = 123.456

; 6. Modulo division
N10 R2 = 7
N15 R3 = 3
N20 R1 = R2 MODULO R3
; after executing of the program line with the number 20
; R1 has the value 1

The Modulo division ...

N10 R1 = R2 MODULO 2.0

is often used to test the evenness of a R-variable. If R2 is even, the integer
rest in R1 is always 0 after doing the modulo division and it can be
evaluated correspondingly:

IF R1 == 0
 ; R2 was even ...
ELSE
 ; R2 was odd
ENDIF

� Reference: Section 3.2.2.2 Functions

Section 3.2.2.3 Boolean expression
Section 3.2.2.4 Assignments
Section 3.2.3.3 Selection instruction
Section 3.2.4.1 Request of an operator dialog

isel-ProNC Programming Instruction

91

3.2.2.2 Functions

Functions

Functions to calculation of R-variable

� Syntax: function_name [arith_expression]

� Explanation: • a function owns always an argument; this argument is placed into a

square bracket (at PAL syntax you can also use round brackets)

• the function name defines the concrete function more nearly:
trigonometric and real functions are distinguished

 Trigonometrical functions

 the arguments of trigonometric functions have to be always indicated into

radian measure (rad):

α (radiant) = α (Grad) * Pi / 180.0

SIN

SIN (arith_expression)

Operator for the trigonometric function SINUS

� Example:

�
R11=PI/2
R12=SIN(R11) ;result 1.0
R13=SIN(2*R11) ;result 0

ASIN ASIN (arith_expression)

Operator for the cyclometric function ARCUSSINUS. The ASIN function is
the mathematical inversion of the SINUS function.

� Example:

�
Example.: Calculation of the angle between the opposite leg and
hypotenuse:

R11=ASIN((R22-R21)/(R32-R31))

COS

COS (arith_expression)

Operator for the trigonometric function COSINUS.

� Example:

�

R11=PI/2
R12=COS(R11) ;result 0
R13=COS(2*R11) ;result -1.0

isel-ProNC Programming Instruction

92

ACOS ACOS (arith_expression)

Operator for the cyclometric function ARCUSCOSINUS. The ACOS
function is the mathematical inversion of the COSINUS function.

� Example:

�

Calculation of the angle between adjacent leg and hypotenuse:

R11=ACOS((R25-R24)/(R32-R31))

TAN

ATAN

TAN (arith_expression)

Operator for the trigonometrical function TANGENS.

ATAN (arith_expression)

Operator for the cyclometric function ARCUSTANGENS. The ATAN
function is the mathematical inversion of the TANGENS function.

� Example:

�
N10 R1 = Pi / 4 ; a 45° angle
N20 R2 = TAN[R1] ; result: R2 gets the value 1.0
N30 R3 = ATAN[R2] ; result: R3 gets the value 0.7854 = Pi / 4

 Real functions

FABS FABS (arith_expression)

Function for the calculation of the absolute value of a signed numeric
expression.

� Example:

�
R2=FABS(R1) result: amount of R1
R2=FABS(-5.0) result: 5

SQRT SQRT (arith_expression)

Function for the calculation of the square root of a numerical expression.

� Example:

�
R2=SQRT(R1) result: the root out of R1
R2=SQRT(9.0) result: 3

; Pythagorean theorem:
; R10=3, R11=4
R12 = SQRT [R10 * R10 + R11 * R11]; result: R12 contains the value 5.0

FLOOR

FLOOR (arith_expression)

Function to round off the argument value. The function calculates the next
integer number, which is smaller or equal to the defined arithmetical
expression.

isel-ProNC Programming Instruction

93

� Example:

�
R2=FLOOR(2.5) result: 2
R2=FLOOR(3.9999) result: 3

N05 R2 = 5.89
N10 R1 = FLOOR[R2]
; after processing the program line with the number 10
; R1 has the value 5.0

EXP EXP (arith_expression)

EXP calculates the exponential function with the base e.

� Example:

�
R22=Exp(R21) ;R-variable as argument
R22=Exp(0) ;result is 1
R22=Exp(1) ;result is 2.718282

LN LN (arith_expression)

LN calculates the natural logarithm of the argument.

� Example:

�
R22=Ln(R21) ;R-variable as argument
R22=Ln(1) ;result is 0
R22=Ln(2.718282) ;result is 1

LOG LOG (arith_expression)

LOG calculates the decade logarithm (base 10) of the argument.

� Example:

�
R22=Log(R21) ;R-variable as argument
R22=Log(1) ;result is 0
R22=Log(10) ;result is 1

SQR SQR (arith_expression)

Function to square the argument.

� Example:

�
R22=Sqr(R21) ;R-variable as argument
R22=Sqr(2) ;result is 4

POW Operator to calculate a potency function. The operator POW is used, how it

is shown in the following example:

result = base POW exponent

� Example:

�
R22=R23 POW R24 ;with R-variable
R22=R23 POW 3 ;constant as exponent
R22=3 POW R23 ;constant base
R3=R1 POW R2 ; result: R3=23 = 8

isel-ProNC Programming Instruction

94

� Reference:

Section 3.2.2.1: Arithmetical expressions
Section 3.2.2.3: Boolean expression
Section 3.2.2.4: Assignments

isel-ProNC Programming Instruction

95

3.2.2.3 Boolean expressions

bool_expression

Boolean expression

� Syntax: 1. bool_expression bool_operator bool_expression or

2. [bool_expression] or
3. p_variable or
4. constant

� Explanation: z a Boolean expression can be combined with help of Boolean operators
with a second Boolean expression

z the result of this operation is a Boolean expression again, the value of
this expression is assigned to a P-variable with help of an assignment

z bool_operator is a sign from the quantity {&, | , ^}, so that the Boolean
operations AND, OR respectively EXCLUSIV OR (ANTIVALENZ) are
available

z to determine the priority, Boolean expressions can be clipped

z in the simplest case a Boolean expression is a P-variable or a hexa-
decimal number

z a bit wise negation of a P-variable is possible with the tilde ~

� Example:

�

; 1. on the right side of the assignment is a complex
; Boolean expression, which value is assigned to the variable P20:
N10 P20 = P11 & 0x11 | P12

; 2. use of the bracket:
N20 P12 = [P13 | P14] & P16

; 3. P-variable results from a P-variable: this is an assignment
; to negation the P-variable:
N40 P99 = ~P98

; 4. P-variable results from a constant: this is an assignment:
N50 P33 = 0xAB ; declaration of the constant hexadecimal
N51 P34 = 10101011B ; declaration of the constant binary

� Reference: Section 3.2.2.1: Arithmetical expressions

Section 3.2.2.2: Functions
Section 3.2.2.4: Assignments

isel-ProNC Programming Instruction

96

3.2.2.4 Assignments

Assignment

Assignment of values / variables to variables

� Syntax: 1. r_variable = arith_expression or
 2. r_variable = q_variable : address letter or
 3. r_variable = frame_name: adress letter or
 4. r_variable = p_variable or
 5. r_variable = MessageBox or
 6. r_variable = GetValue or
 7. r_variable = Posn.A
 8. r_variable = USER or USERBAT or USEREXE or USERDLL
 9. p_variable = bool_expression or
 10. q_variable = frame_name

 z an assignment can be named as equation

z the both sides of the equation are connected by the sign =
z the left side of the equation is always a variable
z 1. the result of an arithmetical expression is assigned to a R-variable
z 2. a component of a Q-variable is assigned to a R variable; this
component is chosen by an address letter addressletter={X,Y,Z,A,B,C} for
axis system 1 respectively {X2,Y2,Z2,A2,B2,C2} for axis system 2
z 3. a component of a FRAME is assigned to a R-variable
z 4. a R-variable is assigned to a P-variable; so that it will be possible, e.
g. to calculate with an input byte
z 5. the result of an operating dialog is assigned to a R-variable
z 6. a value, entered by an operator within an operating dialog, is assigned
to a R-variable
z 7. the current value of an axis position is assigned to a R-variable
z 8. the return code of the current USERDLL function is assigned to a
R-variable
z 9. the result of a Boolean expression is assigned to a P-variable
z 10. a chosen element of the geometry file (this element is a data
structure of 12 float-point numbers), marked by the name frame_name, is
assigned to the Q-variable; therefore the Q-variable is initialised

z frame_name consists of maximum 20 signs (capital letters or numbers),
the first four signs have to be capital letters)

isel-ProNC Programming Instruction

97

� Example:

�

; 1. the result of the arithmetical expression on the right side of the equation
is assigned to the variable R7:
N10 R7 = R8 * R9 + PI * R10

; 2. the value of the Y component of the Q-variable Q2 is assigned to the
; R-variable R22:
N20 R22 = Q2:Y
N21 R23 = Q2 : Y2 ; Y component from axis system 2 to R23

; 3. the value of the Z component of the frame PARK_POSITION is
assigned to the R-variable R23:
N25 R23 = PARK_POSITION: Z

; 4. the value of the P-variable P1 is assigned to the R-variable R10:
N30 R10 = P1

; 5. the value according to the result of the operating dialog
; is stored in the R-variable R30:
N35 R30 = MessageBox Question YesNo "text"

; 6. the operator defines the number of the wished output repetitions
; and this value is stored in the variable R35
N40 R35 = GetValue "Please enter the number of the output repetitions"

; 7. the current axis position of the axis Y in the axis system 1
; is stored in R40
N45 R40 = POS1.Y ; for axis system 1
N46 R40 = POS2.Y ; for axis system 2

; 8. call of an User-Batch-file (DOS) with three parameters, return code
; is stored in R50
N50 R50 = USER [R101 R102 R103]

; 9. the result of the Boolean expression on the right side
; of the equation is assigned to the P-variable P22:
N40 P22 = P1 & P3 & P5 & P7 & P9

; 10. the Q-variable Q4 is initialized:
N50 Q4 = PALETTE_1

� Reference: Section 3.2.2.1: Arithmetical expressions

Section 3.2.2.3: Boolean expression
Section 3.2.2.4: Assignments
Section 3.2.4.1: Request of an operator dialog
Section 3.2.4.2: Activation of several user programs

isel-ProNC Programming Instruction

98

3.2.3 Assignments to control the program process

3.2.3.1 Conditions

Conditions

Conditions to test

� Syntax: 1. arith_expression comparision_operator arith_expression or

2. bool_expression or
3. NOT bool_expression or
4. input_bit or
5. output_bit

� Explanation: z a condition comes true, if the comparison comes true (1.) or
a Boolean expression consists the truth value TRUE (2.) or
a NOT Boolean expression consists the truth value FALSE (3.) or
an input bit is set (4.) or
an output bit is set (5.)

z arith_expression is an arithmetical expression according to the syntax
instruction in section 3.2.2.1 Arithmetical expressions

z bool_expression is a Boolean expression according to the syntax
instruction in section 3.2.2.3 Boolean expression

z NOT bool_expression is the key word NOT together with a Boolean
Expression

z relational_operator = {<, >, !=, ==, <=, >=} is one of the following
character sequences with the meaning:
less then: <
greater then: >
unequal: !=
equal: ==
less or equal: <=
greater or equal: >=

z input_bit is an expression, how it is known from the PLC programming
according to the instruction list:
E byte_number.bit_number

z output_bit is an expression, how it is known from the SPS programming
according to the instruction list:
A byte_number.bit_number

with: 0 < byte_number < 9
and: 0 < bit_number < 9

isel-ProNC Programming Instruction

99

� Example:

�

z syntactic right comparison (less then):
R1 < R2

z syntactic right comparison (greater then):
R3 > R4

z syntactic right comparison (unequal):
R5 != 100

z syntactic right comparison (equal):
R6 == 123.456

z syntactic right comparison (greater or equal):
R7 >= 200

z syntactic right comparison (less then):
R8 <= 2 * PI

z Boolean expressions as condition:
P1 & 0x01
P3 ^ 0x55

z syntactic right input bit:
E1.5

z syntactic right output bit:
A2.8

� Reference: Section 3.2.2.2: Functions

Section 3.2.2.3: Boolean expression

isel-ProNC Programming Instruction

100

3.2.3.2 Branch

IF-construction

conditional branch

� Syntax: IF construction

instructions
ELSE
instructions
ENDIF

� Explanation: z program branch:

1. if the condition comes true, the instructions instructions will be executed
till the key word ELSE

2. if the condition does not come true, the instructions instructions
between the key words ELSE and the key word ENDIF will be executed

z if in the second case no instructions have to be executed, the keyword
ELSE can be left out

� Example:

�
if the value of the variable R1 is greater then the value of the variable R2,
the subprogram with the number 100 is called, in the other case the
subprogram with the number 200 is called:

 ISO: IF R1 > R99
N10 L100
ELSE
N20 L200
ENDIF

 PAL: IF R1 > R99

N10 SUBR100
ELSE
N20 SUBR200
ENDIF

� Reference: Section 3.2.3.1: Conditions

isel-ProNC Programming Instruction

101

3.2.3.3 Selection instruction

SWITCH-
construction

Selection instruction

� Syntax: SWITCH arith_expression

 CASE arith_expression:
 instructions
 ENDCASE
 CASE arith_expression:
 instructions
 ENDCASE
 DEFAULT
 instructions
 ENDCASE
ENDSWITCH

� Explanation: The selection instruction acquires the user the comfort of high level

programming language regarding to the structure block "branch" and it
completes the IF-construction efficient.
The arith_expression, following the Token SWITCH, represents in the
moment of program running a value (real number).
This value is compared with the current value of the following CASE-
section. At agreement the instruction block instructions is carried out,
which is a component of the CASE section, which value after the CASE
Token agrees with the value after the SWITCH-Token.
The instruction block to be done is completed with the Token ENDCASE.
If there isn`t no agreement of the values, the block instructions after the
token DEFAULT is executed.
The DEFAULT section within the SWITCH-construction is optional.

� Example:

�
N1 R1=P1 ;the current input port E1 is transferred as
 ;value (0<=value<256) to the variable R1
SWITCH R1
 CASE 1:
 R2=5 ;the value 5.0 is assigned to the variable R2
 ENDCASE

 CASE 2:
 R2=6 ;the value 6.0 is assigned to the variable R2
 ENDCASE

 CASE 3:
 R2=7 ;the value 7.0 is assigned to the variable R2
 ENDCASE

 DEFAULT
 R2=10 ;the value 10.0 is assigned to the variable R2
 ENDCASE
ENDSWITCH

� Reference: Section 3.2.4.1: Request of an operator dialog

isel-ProNC Programming Instruction

102

3.2.3.4 Counting loop

FOR-loop

Counting loop with a counting variable

� Syntax: FOR r_variable = startvalue, endvalue, stepvalue

 instructions
ENDFOR

� Explanation: z r_variable is a R-variable R0 to R999

z the start value startvalue is assigned to the R-variable

z the assignments until the key word ENDFOR are executed as long as the
R-variable is less then or equal the end value endvalue

z the R-variable is increased about the step value stepvalue, if the last
instruction in front of the key word ENDFOR is carried out

z maximum five FOR-loops can be programmed interleaved

z maximum 62 FOR-loops can be programmed in a source program
behind each other

z from the both previous items follows, that maximum
5 x 62 = 310 FOR-loops can be programmed in a source program

� Example:

�
; start of the counting loop
FOR R0=0,100,1
; the coordinate value for the center point coordinate
 N10 R8= 50.0 + R1 / 2.0
; the coordinate value for the target coordinate
 N20 R7 = 100.0 + R1
; semicircle with value transfer of the variable R7 to the
; target coordinate X and of the variable R8 to the center point coordinate I

 ISO: N30 G2 XR7 IR8
 PAL: N30 CWABS XR7 IR8
 ENDFOR

� Reference: Section 3.2.1: Variables

Section 3.2.2: Parameter calculation

isel-ProNC Programming Instruction

103

3.2.3.5 Loop with test at start

WHILE-loop

Loop with test of a condition at start

� Syntax: WHILE condition

 instructions
ENDWHILE

� Explanation: z the instructions instructions are executed as long as the condition

condition is true

z it won't be executed any instruction, if the condition is false at the first test

z maximum five WHILE-loops can be programmed interleaved

z maximum 62 WHILE-loops can be programmed in a source program
behind each other

z from the both previous items follows, that maximum
5 x 62 = 310 WHILE-loops can be programmed in a source program

Please notice
these bit mask:

�

Mask to selection of bit 1 out of the byte: 0x01
Mask to selection of bit 2 out of the byte: 0x02
Mask to selection of bit 3 out of the byte: 0x04
Mask to selection of bit 4 out of the byte: 0x08

Mask to selection of bit 5 out of the byte: 0x10
Mask to selection of bit 6 out of the byte: 0x20
Mask to selection of bit 7 out of the byte: 0x40
Mask to selection of bit 8 out of the byte: 0x80

P-variable with
mask or input
bit:

P1 & 0x01 corresponds to E1.1 ; the input 1 in the input port 1
P1 & 0x02 corresponds to E1.2 ; the input 2 in the input port 1
P1 & 0x04 corresponds to E1.3 ; the input 3 in the input port 1
P1 & 0x08 corresponds to E1.4 ; the input 4 in the input port 1
P1 & 0x10 corresponds to E1.5 ; the input 5 in the input port 1
P1 & 0x20 corresponds to E1.6 ; the input 6 in the input port 1
P1 & 0x40 corresponds to E1.7 ; the input 7 in the input port 1
P1 & 0x80 corresponds to E1.8 ; the input 8 in the input port 1

� Example:

�
ISO: ; as condition is tested, if bit 8 (input 8) is set

; in input port 2:
; Hint: E2.8 is equivalent to P3 & 0x80

WHILE E2.8
; straight line to the target point 100mm, 200mm, -300mm:
 N10 G1 X100 Y200 Z-300
; wait 1 sec:
N20 TIME 1000
; straight line to target point 0mm, 0mm, 0mm:
N30 G1 X0 Y0 Z0
ENDWHILE

isel-ProNC Programming Instruction

104

; the empty WHILE-loop is carried out as long as
; the bit 4 is set in input port 1:
; synchronisation with a binary input and wait
; for the high-low-flank:
WHILE E1.4
; empty loop body
ENDWHILE

; the empty WHILE-loop is carried out as long as
; one of the bits 4 or 5 or both are set in the input port 2:
; synchronisation with two binary inputs and wait, until
; both inputs E2.4 and E2.5 have the value 0:
WHILE P3 & 0x18
; empty loop body
ENDWHILE

 PAL: ; as condition is tested, if bit 8 (input 8) is set
; in input port 2:
; Hint: E2.8 is equivalent to P3 & 0x80

WHILE E2.8
; straight line to the target point 100mm, 200mm, -300mm:
 N10 MOVEABS X100 Y200 Z-300
; wait 1 sec:
N20 TIME 1000
; straight line to target point 0mm, 0mm, 0mm:
N30 MOVEABS X0 Y0 Z0
ENDWHILE

; the empty WHILE-loop is carried out as long as
; the bit 4 is set in input port 1:
; synchronisation with a binary input and wait
; for the high-low-flank:
WHILE E1.4
; empty loop body
ENDWHILE

; the empty WHILE-loop is carried out as long as
; one of the bits 4 or 5 or both are set in the input port 2:
; synchronisation with two binary inputs and wait, until
; one of the both inputs E2.4 and E2.5 have the value 0:
WHILE P3 & 0x18
; empty loop body
ENDWHILE

� Reference: Section 3.2.1: Variables

Section 3.2.2: Parameter calculation
Section 3.2.3.2: Branch
Section 3.2.3.6: Loop with test at end

isel-ProNC Programming Instruction

105

3.2.3.6 Loop with test at the end

DO-loop

Loop with test of a condition at the end

� Syntax: DO

 instructions
ENDDO condition

OR

� Syntax: REPEAT

 instructions
UNTIL condition

� Explanation: z the instructions instructions are executed at least once

z the condition will be tested, if the key word ENDDO | UNTIL is reached

z if the condition condition is true, the DO-loop is finished and it will be
continued with the next instruction respectively the next NC set in the
program

z maximum five DO | REPEAT-loops can be programmed interleaved

z maximum 62 DO | REPEAT-loops can be programmed in a source
program behind each other

z from the both previous items follows, that maximum
5 x 62 = 310 DO | REPEAT-loops can be programmed in a source program

� Example:

�
ISO: DO

; straight line to the target point 100mm, 200mm, -300mm:
N10 G1 X100 Y200 Z-300
; wait 1 sec:
N20 G4 1000
; straight line to the target point 0mm, 0mm, 0mm:
N30 G1 X0 Y0 Z0
; it is tested as condition, if bit 3 (the input 3)
; is set in input byte 5 (input port 5):
; if E5.3 is logical true, the DO-loop is finished:
ENDDO E5.3

; the empty DO-loop is carried out as long as
; the bit 7 in the input port 2 is low:
; synchronisation with a binary input and with wait
; for the low-high-flank:
; hint: E2.7 is equivalent to P3 & 0x40
DO
; empty loop body
ENDDO E2.7

; the empty DO-loop is carried out as long as,
; one of the bits 4 or 5 or both are set in the input port 2:

isel-ProNC Programming Instruction

106

; synchronisation with two binary inputs and with wait,
; until one of the both inputs E2.4 or E2.5 has the value 1:
DO
; empty loop body
ENDDO P3 & 0x18

�

PAL: DO
; straight line to the target point 100mm, 200mm, -300mm:
N10 MOVEABS X100 Y200 Z-300
; wait 1 sec:
N20 TIME 1000
; straight line to the target point 0mm, 0mm, 0mm:
N30 MOVEABS X0 Y0 Z0
; it is tested as condition, if bit 3 (the input 3)
; is set in input byte 5 (input port 5):
; if E5.3 is logical true, the DO-loop is finished:
ENDDO E5.3

; the empty DO-loop is carried out as long as,
; the bit 7 in the input port 2 is low:
; synchronisation with a binary input and with wait
; for the low-high-flank:
; hint: E2.7 is equivalent to P3 & 0x40
DO
; empty loop body
ENDDO E2.7

; the empty DO-loop is carried out as long as
; one of the bits 4 or 5 or both are set in the input port 2:
; synchronisation with two binary inputs and with wait,
; until one of the both inputs E2.4 or E2.5 has the value 1:
DO
; empty loop body
ENDDO P3 & 0x18

� Reference: Section 3.2.1: Variables

Section 3.2.2: Parameter calculation
Section 3.2.3.2: Branch
Section 3.2.3.5: Loop with test at start

isel-ProNC Programming Instruction

107

3.2.4 Instructions to communication with extern devices

3 .2.4.1 Request for an operator dialog

MessageBox

Request for an operator dialog

� Syntax: r_variable = MessageBox [icon] [button] "text"

[icon] {INFO or WARNING or QUESTION or ERROR}
[button] {OK or OKCANCEL or YESNO or YESNOCANCEL or
RETRYCANCEL or ABORTRETRYIGNORE}

� Explanation: z a dialog box with a message appears on the screen

z the program is interrupted as long as an operator input will happen
z according to the decision of the operator the return parameter is stored
in the R-variable
z the user can determine itself symbols, buttons and text of errors within
the default
z if the "text" to be given out in the dialog box contains several lines for
each line break must be written a \n
z an evaluation of the R-variable can be done with the SWITCH-
instruction

� Example:

�
; after decision of the operator to continue (YES)
; or to finish (NO) the process
; the return code IDYES or IDNO is stored in R1
N10 R1 = MessageBox ERROR YESNO "Temperature limit is reached:
\n\n\n continuation ?"
;
; evaluation of the return code
SWITCH R1
 Case IDYES:
 Type Messagebox finished with YES . . .
 EndCase
 Case IDNO:
 Type Messagebox finished with NO . . .
 EndCase
ENDSWITCH

� Reference: Section 3.2.2.1: Arithmetical expressions

Section 3.2.2.4: Assignments
Section 3.2.3.3: Selection instruction

isel-ProNC Programming Instruction

108

3.2.4.2 Activation of several user programs

USER|USERBAT
USEREXE
USERDLL

Activation of user programs in a DOS-BATCH-File,
as Windows-EXE or
as function of a Windows-DLL

� Syntax: Rx = USER[Ra Rb Rc ... Ri]
• x, a ... i for arbitrary indices of the R-variable or the axis position
• maximum 9 parameters (Ra to Ri) can be submitted
• x can have the value 0 ... 999
Rx = USEREXE name_exe_file
Rx = USERDLL name_dll_file name_dll_function

� Explanation:

�

• It is possible in ProNC, to activate user specific programs during the
runtime of the ISO/PAL user program (DOS-BATCH-Files, EXE-Files or
DLL-functions).
To this purpose the files user.bat, name.exe, name.dll, to be called, must
be installed in the directory \CNCWorkbench\BIN. These files the user can
create arbitrary respectively he can use already existing files according to
his concrete task.

The declaration of the Bat-, Exe- or DLL-file in the user program happens
always with the name of the file without extension.

Hint:
In ProNC it is very simple to integrate protocol and/or printer functions in
the running user program with the activation of Batch files.
1. R101 to R106 respectively POS1.X to POS1.C are the current values
 of the axes 1...6 in the axis system 1
2. R201 to R206 respectively POS2.X to POS2.C are the current values
 of the axes 1...6 in the axis system 2

The possible applications for the ability to activate own user files in the
ISO/PAL application program are for example:
- generation of tracing files and protocols
- print of arbitrary program data
- parameter setting of extern devices how controller for laser- or welding
processes with serial interface
- communication with stand alone controllers
- operation of OEM-Hardware (e. g. DAC) in the master PC
- realization of a remote diagnostics (Modem or Ethernet)
- integration of user specific dialogs respectively visualisation

isel-ProNC Programming Instruction

109

� Example:

�
X; activation of the user-batch-file user.bat
 ; with delivery off the three parameters (actual value of axes X, Y and Z):
 N100 R1 = UserBat[POS1.X POS1Y POS1Z]

 the batch-file user.bat has the following content e. g.:
 @echo off
 echo logging actual values>prn
 echo X=%1 Y=%2 Z=%3>prn

Y; activation of the User-Exe Wordpad
 N200 R0=UserExe Wordpad

Z; the function function_name of the DLL
 ; dll_name, creating by a user,
 ; shall be started
 ; this user_DLL must be stored in the BIN-directory
 ; of the current ProNC installation
 ; (e. g. C:\CNCWorkbench\Bin)
 ; the user_DLL has to provide at least the function
 ; function_name

; Activation of a user_DLL
 N300 R2=UserDLL dll_name function_name

isel-ProNC Programming Instruction

110

� Hint:

�

Hint for C-Programmer to implementation of the /a User-DLL:

// defines:
#define ERR_NOERROR (DWORD)0
#define USER_DLLFUNC __declspec(dllexport) _stdcall

// types:
typedef struct r_var
{
 int nInit;
 double dValue;
} typ_r_var;

// prototyping:
DWORD USER_DLLFUNC FUNKTION_NAME(LPVOID parameter1,
LPVOID parameter2);

// function body:
DWORD USER_DLLFUNC FUNKTION_NAME(LPVOID parameter1,
LPVOID parameter2)
//--
// function code for a User DLL function ...
// in:
// parameter1: pointer to the name of the current variable file *.var
// parameter2: pointer to the R-variables
// out:
// return parameter
//--
{

AFX_MANAGE_STATE(AfxGetStaticModuleState());

DWORD dwRetc;
int nResponse;
typ_r_var MyCurrentRvariableR0;
typ_r_var *pR_variable = (typ_r_var *)parameter2;

// Your user source code in C / C++ ...

 // Hint:

// You have access to all 1000 R-variables, which are available in
//ProNC for the user programming.

// The R-variable R0 is read how follows:
mycurrentRvariableR0.dValue = pR_variable[0].dValue;

// The R-variable R0 is written with the value 123.456:

 pR_variable[0].dValue = 123.456;

 return(ERR_NOERROR);
}

� Hint:

�
If you want to create your user-DLL with a PASCAL programming
environment or with LabView® , we enjoy you to help.
Please contact the customer support tech-support@isel.com sales / service,
sales / technical support.

isel-ProNC Programming Instruction

111

4 Synchronisation to the motion end, integration of Teach In

4.1 Synchronisation to the motion end

Programming
of a motion command
as a "motion kickoff":

�

With the software system ProNC it is possible to program a
parallelism of movement and program interpretation. To this purpose
it is required, to define syntactically a "motion kickoff" in the user
program.
The "motion kickoff“ is programmed with a lozenge # . The lozenge
must lead the motion command. This motion kickoff causes, that the
so marked motion command is delivered to the motion control, the
motion is started, but the end of the motion is not awaited as
otherwise usually:

 N10 #MOVEABS X100 Y200;“motion kickoff“ with special character #

While (InMotion) ; synchronisation to the motion end
 If (POS1.X > 40) and (POS1.X < 60)
 SetBit A1.1=1
 Else
 SetBit A1.1=0
 EndIf
EndWhile
; continue here, if the target position is reached
; X=100, Y=200

 The synchronisation to the motion end is realized within the loop (e.

g. WHILE-loop) following the set N10. The special condition InMotion
is true as long as the initiated motion to the target point [X100,
Y200] is active. During this motion e. g. the actual axis values
(POS1.X for X, POS1.Y for Y, POS1.Z for Z, ... POS1.C for C)
can be controlled, to set or reset certain outputs.

During an axis motion the movement can be affected.

To this the following example:

isel-ProNC Programming Instruction

112

� Example:

�
MoveAbs X50.0 ; start position in the X-axis
#MoveRel X1000.0 F5.0 ; motion kickoff
While (InMotion)
 IF E1.1
 MOverride 50 ; override to 50%
 SetPort A1=11110000B
 EndIf
 If E1.2
 MOverride 140 ; override to 140%
 SetPort A1=00001111B
 EndIf
 If E1.3
 MStop ; stop the motion
 EndIf
 If E1.4
 MStart ; continue the motion
 EndIf
 If E1.5
 MAbort ; abort the motion
 EndIf
EndWhile

 The following commands to the motion influence are available:

MOverride value ; set motion override to value
 ; (0 ≤ value ≤ 140)
MStop ; stop the motion
MStart ; continue the motion
MAbort ; abort the motion

� Hint: The above-mentioned commands are equal for ISO and PAL.

4.2 Integration Teach-In

Integration of Teach
In:

The integration of Teach-In on the level of the user program (ISO- or PAL-
user program) is made by:

• the programming of the command Teach
• the using of frame variables (Q-variable)
• the declaration of frame names to definition the motion targets of

motion commands
• FASTFRAME
• MOVEFRAME

Frame-variable
initialise :

�

Example:
Q1 = START_MILLING

Explanation:
In the current geometry file name.fra which belongs to the user program
name.cnc, a frame structure with the name START_MILLING is searched.
If such a structure exists, the values X-coordinate, Y-coordinate, Z-
coordinate, A-coordinate, B-coordinate, C-coordinate) stored in the
geometry file will be assigned to the Q-variable Q1. The purpose of this

isel-ProNC Programming Instruction

113

construction (initialisation of the Q-variable) is: The access to the
geometry information (coordinate values) within the Q-variables is done
much faster then to a named structure within the geometry file.

please refer to:
Operating Instruction: Menu 2.2.2 The geometry file

Access to geometry
information in frame-
variables:

�

The access to the stored geometry information (coordinate values of all
axes), stored after the initialisation of the frame variable in this variable,
can occurs as follows:
Isolation of a certain component of a frame variable:

Example:
R1 = Q1:X
Explanation:
The value of the X-coordinate within the geometry variable Q1 is assigned
to the R-variable R1.

Example:
R2 = Q1:Y
Explanation:
The value of the Y-coordinate within the geometry variable Q1 is assigned
to the R-variable R2.

Example:
R3 = Q1:Z
Explanation:
The value of the Z-coordinate within the geometry variable Q1 is assigned
to the R-variable R3.

Example:
R4 = Q1:A
Explanation:
The value of the A-coordinate within the geometry variable Q1 is assigned
to the R-variable R4.

Example:
R5 = Q1:B
Explanation:
The value of the B-coordinate within the geometry variable Q1 is assigned
to the R-variable R5.

Example:
R6 = Q1:C
Explanation:
The value of the C-coordinate within the geometry variable Q1 is assigned
to the R-variable R6.

isel-ProNC Programming Instruction

114

Target-setting with
help of geometry
information in
frame variables or
direct declaration of
the frame name:

The access to the stored geometry information, stored in the frame variable
after its initialisation, can occur as follows:

� Example: ; designation of a Q-variable as target-setting of a motion command:

 ISO: N100 G11 Q1
 PAL: N100 MOVEFRAME Q1

Explanation:
It will be executed an absolute motion G11| MOVEFRAME of all axes to the
coordinate values, which are stored within the Q-variable:
That means:
The value of the X-coordinate within the Q-variable Q1 determines the
target position of the X-axis.
The value of the Y-coordinate within the Q-variable Q1 determines the
target position of the Y-axis.
The value of the Z-coordinate within the Q-variable Q1 determines the
target position of the Z-axis.
The value of the A-coordinate within the Q-variable Q1 determines the
target position of the A-axis.

Alternative to the declaration of a Q-variable in the command
G10 |FASTFRAME respectively G11 | MOVEFRAME the name of the
wished frames can be defined directly:

Example:

 ISO: N100 G11 START_MILLING
 PAL: N100 MOVEFRAME START_MILLING

Explanation:
It will be executed an absolute motion G11 | MOVEFRAME of all axes to
the coordinate values, which are stored in the frame with the name
START_MILLING:
That means:
The value of the X-coordinate within the frame with the name
START_MILLING determines the target position of the X-axis.
The value of the Y-coordinate within the frame with the name
START_MILLING determines the target position of the Y-axis.
The value of the Z-coordinate within the frame with the name
START_MILLING determines the target position of the Z-axis.

(appropriate also at the axes A, B and C)

Geometry file -
frame structure:

The initialisation of a Q-variable presupposes, that the information was
stored in a geometry file. These information represents during the Teach-In
current positions / orientation(s) of a plant. The coordinates are stored into
a fixed structure, the frame structure. Each geometry file can contain
arbitrarily many frame structures. Each of these structures gets a name
(consisting of maximum 20 signs). Within a geometry file a frame name
may appear only once.

isel-ProNC Programming Instruction

115

4.3 Example for a user program with integration Teach-In

Next the user program (in PAL syntax) mfp_p.pal (my first program) is listed. This simple user program
demonstrates self-documenting the integration of Teach-In in an application program .

mfp_p.pal

�
The described PAL source program mfp_p.pal is provided in the directory

\CNCWorkbench\NCProg\PAL\Sample

after the installation.
The analog ISO source program you will find in the directory
\CNCWorkbench\NCProg\ISO\Sample as mfp_p.iso.

;==
; Anwenderprogramm für ProNC:
;
; User program for ProNC:
;
; mfp_p.pal: my first program (PAL Syntax)
;==
; no subprogram declaration required ...
;
;--
; Start of the main program:
ProgBegin
N10 Ref XYZ ; reference run in all axes
N20 Type the teached position can be still corrected ...
N30 Teach
;
; FOR-loop: 200 times
For R0=1,200,1
;
; approach to park position with fast velocity:
 N100 FastFrame PARK_POSITION
; switch on spindle 1 (clockwise), 8000 r.p.m.
 N110 Sclw 1 S1=8000
; approach to start position to milling with rapid velocity
; (spindle turn on):
 N120 FastFrame START_MILLING
; milling process with processing velocity of 5 mm per second:
 N130 MoveFrame END_MILLING F5.0
; switch off spindle:
 N140 Soff
; wait in the current position 1 sec = 1000 msec:
 N150 Time 1000
; test, is a reference run to carry out after 100 cycles:
 If R0 == 100
 N200 Type reference run in all axes ...
 N210 REF
; end of the IF-construction
 EndIf
; end off the counting loop
EndFor
;--
; program end
ProgEnd
;==

isel-ProNC Programming Instruction

116

5 Selected solutions with ProNC

5.1 isel-XYZ-plants / several Cartesian Kinematics
5.1.1 Learning

The following user program (ISO: learning.iso / PAL: learning.pal) is well suitable, to get to know important
commands of ProNC e. g. linear- and circular interpolation, path conditions like absolute measurement
and relative measurement (incremental measure), interpolation plane for the circular interpolation, dwell
time, subprogram technique and others.

Work piece zero point
with Teach-In:

A successful processing of the program learning.iso / learning.pal
presupposes, that the workpiece zero point is assumed with Teach-In in
the associated geometry file „learning.fra“.

WPZP =
Work Piece Zero Point:

The geometry file learning.fra contains only the frame structure with the
name WPZP: Work Piece Zero Point.

Learning.iso

�
The according ISO source program learning.iso is stored in the directory

\CNCWorkbench\NCProg\ISO\Sample

after installation.

Learning.pal

�
The according PAL source program learning.pal is stored in the directory

\CNCWorkbench\NCProg\PAL\Sample

after installation.

5.1.2 Figures

Processing the following program

ISO: Figures.iso
PAL: Figures.pal

at an isel-XYZ-plant the following milling contour results (referred to the XY-plane):

Up left: square, standing on an edge
Up right: equilateral triangle
down left: circle
down right: cross (height = circle diameter)

isel-ProNC Programming Instruction

117

Figures.iso

�
The according ISO source program figures.iso is stored in the directory

\CNCWorkbench\NCProg\ISO\Sample

after installation.

Figures.pal

�
The according PAL source program figures.pal is stored in the directory

\CNCWorkbench\NCProg\PAL\Sample

after installation.

5.1.3 Milling of a simple contour

Processing the following program with an isel-XYZ-plant produces the following milling contour:

isel-ProNC Programming Instruction

118

Contour.iso

�
The according ISO source program contour.iso is stored in the directory

\CNCWorkbench\NCProg\ISO\Sample

after installation.

Contour.pal

�
The according PAL source program contour.pal is stored in the directory

\CNCWorkbench\NCProg\PAL\Sample

after installation.

5.1.4 Drilling

In the following drilling program the use of nested FOR-loops as well as the subprogram technology
will be demonstrated.

Use of FOR-loops: R-variables have to be used as loop counter.

The loop counter R10 can deliver its current value to the X-coordinate as
target value:

For R10=10,100,10 ; counter loop for the X-coordinate
;
; approach the X-coordinate according to the value R10
 N40 FASTABS XR10
...

Determine the
zero point:

For a correct working of the program at your plant you have to determine
the zero point of the work piece, that will be drilled and you have to update
it in the next set:

isel-ProNC Programming Instruction

119

N20 FASTABS X80 Y70 Z-30 ; approach the new work piece zero point

More effective is surely a procedure according to the program
„learning.pal“ in the previous capital. There the work piece zero point
WPZP was teached and was assumed into the Q-variable Q1 during the
run time of the user program. After approaching the teached point with the
NC set MOVEFRAME Q1, a new zero point can be activated with the
WPZERO-command.
You should carry out and translate newly the above-mentioned program
modification in your source program "drilling.iso"/"drilling.pal". Is the
zero point submitted with Teach-In in the new defined geometry file
„drilling.fra“, the user program „drilling.cnc“ can be started:

Drilling.iso

�
The according ISO source program drilling.iso is stored in the directory

\CNCWorkbench\NCProg\ISO\Sample

after installation.

Drilling.pal

�
The according PAL source program drilling.pal is stored in the directory

\CNCWorkbench\NCProg\PAL\Sample

after installation.

5.1.5 Milling of pockets

The following example program to mill pockets bases on the use of the variable concept and the
parameter calculation with R-variable. The use of nested FOR-loops as well as the subprogram
technique will be demonstrated.

Pockets.iso

�
The according ISO source program pockets.iso is stored in the directory

\CNCWorkbench\NCProg\ISO\Sample

after installation.

Pockets.pal

�
The according PAL source program pockets.pal is stored in the directory

\CNCWorkbench\NCProg\PAL\Sample

after installation.

isel-ProNC Programming Instruction

120

5.1.6 Engraving script with Laser

The following script results when processing the following program with an isel-XYZ-plant:

Script.iso

�
The according ISO source program script.iso is stored in the directory

\CNCWorkbench\NCProg\ISO\Sample

after installation.

Script.pal

�
The according PAL source program script.pal is stored in the directory

\CNCWorkbench\NCProg\PAL\Sample

after installation.

5.1.7 Welding

The following programme realizes an automatic welding of a car body frame.
Four seams are welded.

Teach-In for welding
seams:

�

Eight teached points are required for four welding seams:

N05 Q1 = SEAM_PPOINT1_START ; seam 1 – start point
N10 Q2 = SEAM_POINT1_END ; seam 1 – end point
N15 Q3 = SEAM_PPOINT2_START ; seam 2 – start point
N20 Q4 = SEAM_POINT2_END ; seam 2 – end point
N25 Q5 = SEAM_PPOINT3_START ; seam 3 – start point
N30 Q6 = SEAM_POINT3_END ; seam 3 – end point

isel-ProNC Programming Instruction

121

N35 Q7 = SEAM_PPOINT4_START ; seam 4 – start point
N40 Q8 = SEAM_POINT4_END ; seam 4 – end point

To transition from end point of seam 1 to the start point of seam 2 an
intermediate point is required:

N45 Q12= ONE_TO_TWO ; transition seam 1 to seam 2

To transition from end point of seam 3 to the start point of seam 4 an
intermediate point is required:

N50 Q34= THREE_TO_FOUR ; transition seam 3 to seam 4

Migmag.iso

�
The according ISO source program migmag.iso is stored in the directory

\CNCWorkbench\NCProg\ISO\Sample

after installation.

Migmag.pal

�
The according PAL source program migmag.pal is stored in the directory

\CNCWorkbench\NCProg\PAL\Sample

after installation.

isel-ProNC Programming Instruction

122

6 Summary

6 Summary

ProNC:

The software package ProNC is an operating and programming system for CNC
plants / CNC systems for processing and handling applications. ProNC integrates a
mouse sensitive operator surface according to the SAA-standard and a
programming platform to design, start up and test of ISO- resp. PAL-user programs.

Operator-
dialog:

The operator dialog will be realized with several pull-down-menus with a functional
clear operating structure. Plain text error messages and error information and the
direct context-dependent branch to the online-help supports the using of the
programming system effectively. Operating- and runtime errors will be reported as
plain text in Windows style.

isel-
control
software:

ProNC is executable on PCs running the operating system Win98 / Win2000 /
WinNT4.x / WinXP. The software was implemented as further development of the
systems Remote / Pro-DIN resp. Pro-PAL. There the technology-oriented syntax of
DIN 66025 resp. of isel-NCP-format was completed with problem-oriented con-
structions for structured programming, parameter calculation as well as for access to
geometry files. This is defined as flexible, efficient programming language (ISO- or
PAL syntax).

ISO- / PAL-
compiler:

The possibility of nested use of constructions to control the programming run as well
as the subprogram technique requires a compiler with tasks of the syntactical
analysis of the source program and the generation of the CNC user program as input
language for the CNC interpreter. The ISO- / PAL compiler is provided as an
independent DLL and offers the user an extensive support to correct syntactical
errors.

Automatic
mode:

In automatic mode the program test will be efficiently supported with the possibility of
activation of break points in arbitrary NC-sets as well as the manipulation of current
values of R-variables (data type: floating-point).

Teach-In: The Teach-In can be made directly, if no self-arresting gears are available in the

cinematic chain. There the corresponding axes will be moved with current-free
motors with hand to the wished position. The taken joint vector will be stored in the
geometry file.
Using indirect Teach-In the tool will be moved to the desired target position with help
of a complex dialog box and usage of function keys.

Software
hierarchy

Within the hierarchy of the isel-control-software the operating- and programming
surface ProNC applies on a plane of device-DLLs for
• motion control (Motion Control)
• input- and output (Input / Output)
• spindle control (Spindle)
• tool changer control (Tool Changer) and others.
With this hierarchy concept it will be possible, to apply the program package for a
great range of isel-control Hardware (e. g. IMC4-/C116/C142-, IMS6/IML4-Controller,
UPMV4/12-controls respectively CVC496-Controller with CANopen-Interface), if the
special device-DLLs, offered for the special Hardware, are compatible in their
functions.

isel-ProNC Programming Instruction

123

Glossar

button
A graphic image, that can be clicked with the mouse to initiate some action
e. g. start of a dialog field

CNC user file

The CNC user file will be created out of a syntactic errorless ISO- or PAL-
source file. The CNC user file is the input file for
the CNC interpreter.

EDP
Electronic Data Processing

FRAME
Data structure, coordinate system, certain matrix

IO
Input/Output

MCTL
Motion control

PLC
Programmable Logic Controller

SAA-Standard
System Application Architecture

SPN
Spindle module

S-PTP
synchronous Point-to-Point

TCH
Tool Changer

isel-ProNC Programming Instruction

124

Index

!

!= ... 98

%

%L-declaration... 77
%SUBR-declaration... 77

&

&, | , ^ ... 95

{

{+,-,*,/, MODULO ... 89

<

< ... 98
<=... 98

=

==... 98

>

> ... 98
>=... 98

A

ABORT...60, 61
ABS..46, 50, 55
absolute measure .. 55
ACOS... 92
Actual value of a axis position 70, 71
address letter ... 18, 50
AND, OR respectively EXCLUSIVE OR 95
argument of a function 89
arguments of trigonometric functions 91
arith_expression .. 89
arith_operator... 89
ASIN... 91
Assignment .. 96
ATAN ... 92
Automatic mode... 122
auxilary axes.. 21
axis systems in ProNC....................................... 20

B

binary numbers ... 26
bool_expression... 95
Boolean expression ... 95
break point ... 7

C

CCWABS ... 37
CCWHLXABS .. 42
CCWHLXREL .. 42

CCWREL... 37
center coordinates....................................... 35, 37
circle number ... 27
circular interpolation ccw 37
circular interpolation cw..................................... 35
CNC file ... 13
CNC interpreter ... 122
comment filter .. 14
comment line ... 14
commentaries .. 13
Compensation ... 6
Concept ... 8
Conditions.. 98
constant ... 95
contour.iso ... 118
contour.pal... 118
control module ... 8
coolant ... 64
COOLANT OFF... 64
COOLANT ON... 64
coordinate word... 11
cordinates .. 20
COS... 91
Counting loop .. 102
C-Programmer... 110
current date ... 71
CWABS ... 35
CWHLXABS .. 43
CWHLXREL... 43
CWREL.. 35

D

decimal numbers ... 27
declaration force.. 77
Definition of a drilling cycle................................ 52
Definition of measure .. 49
DELAY... 39
Determine the zero point 118
Dialog field for user ... 72
direct Teach-In... 7
DLL .. 8, 110
Dll-file... 108
DLL-functions .. 108
DO-loop ... 105
DOS-BATCH-Files... 108
DrillB .. 54
DrillD.. 54
DRILLDEF ... 52
Drilling (mode crack swarf)................................ 54
Drilling with dwell ... 54
drilling.iso... 119
drilling.pal .. 119
Drillling (mode countersick) 54
DrillN.. 54

isel-ProNC Programming Instruction

125

DrillT .. 54
Dynamic Link Libraries .. 8

E

elements of the geometry file 25
elements of the NC set 14
ELSE.. 100
empty loop body 103, 104
emty instruction ... 24
ENDDO.. 105
ENDFOR.. 102
ENDIF .. 100
ENDSWITCH... 101
ENDWHILE.. 103
ERROR.. 107
EXE-Files... 108
EXP.. 93

F

FABS ... 92
FALSE ... 27
fast velocity .. 30
Fast velocity... 73
FASTABS .. 33
FASTFRAME... 40
FASTVEL-Befehl ... 73
F-command.. 74
Figures.iso ... 117
Figures.pal ... 117
floating-point number... 81
FLOOR .. 92
FOR- loop .. 102
FRAME .. 25
frame file .. 7
frame name.. 25
function_name ... 91
functions .. 91

G

G0 .. 33
G1 .. 34
G10 .. 40
G11 .. 41
G17 .. 45
G18 .. 45
G19 .. 45
G2 .. 35
G3 .. 37
G4 .. 39
G53 .. 46
G54 .. 46
G55 .. 46
G56 .. 46
G60 .. 47
G64 .. 47
G70 .. 49
G71 .. 49
G74 .. 50

G75...51
G80...52
G81...54
G82...54
G83...54
G84...54
G90...55
G91...55
G92...56
G93...56
G98...57
G99...58
G-command..9
gearing ...9
geometry file...7, 25
GetBit ...67
GetDate ..71
GetP ...67
GetPort ...67
GetTool...76
GetTool TC1...76
GetTool TC2...76
GetValue ..72

H

hand mode ...67
Helix interpolation CCW43
Helix interpolation CW..42
hexadecimal numbers ..26
HOFF..67
HON ...67

I

IDABORT ...89
IDCANCEL ...89
identifier..25
IDIGNORE..89
IDNO ..89
IDOK...89
IDRETRY..89
IDYES...89
IF-construction..100
INCH...49
incremental measure..55
Indexierung von Q-Variablen40
indirect Teach-In...7
INFO...107
Initialisation file ...9
initialisation file of the motion control module9
input port ..67
input-/output-modules ..8
instruction ...28
interpolation plane..30, 45
ISO syntax..7

K

key words ...24

isel-ProNC Programming Instruction

126

L

Lamp.. 65
LAMP OFF... 65
LAMP ON... 65
L-command.. 79
Learning.iso ... 116
Learning.pal ... 116
length of a NC set .. 16
Liability ... 6
linear axes.. 21
linear interpolation ... 34
LN .. 93
LOG ... 93

M

M0 .. 60, 61
M1 .. 60, 61
M10 .. 64
M11 .. 64
M3 .. 62
M4 .. 62
M5 .. 62
M8 .. 64
M9 .. 64
main program... 12
manipulation of technology-variables 57
M-command... 9
MessageBox .. 107
METRIC ... 49
mnemonic .. 9
modality.. 10
modulo division .. 89
motion command ... 11
motion control modules.. 8
motion instructions... 6
motion with fast velocity..................................... 33
MOVEABS ... 34
MOVEFRAME.. 41
MOVEREL ... 34
Mpby .. 68

N

name of axes by DIN 66025 21
name of axis... 21
natural or decimal number 17
nested depth .. 77

O

order of the individual words.............................. 17
output port.. 68

P

P variable ... 81
PAL syntax... 7
PARAMETER... 57
Parameter calculation .. 89
PATH ... 47

path commands in ProNC 32
Path drive .. 47
Path motion switch off 47
Path motion switch on 47
PATHEND ... 47
Periphery option .. 66
Pi 89
PLANE XY... 45
PLANE XZ ... 45
PLANE YZ ... 45
pockets.is... 119
pogram end ... 61
POPTION1 ON/POPTION1 OFF 66
POPTION2 ON/POPTION2 OFF 66
POSn.A.. 70
POW .. 93
print of arbitrary program data......................... 108
processing velocity .. 30
Processing velocity.. 74
program interrupt.. 60
program branch ... 100
program structure .. 9
program text .. 24
programmable abort .. 44
pulse duty ratio .. 70
Pump ... 65
PUMP OFF.. 65
PUMP ON.. 65
P-variable .. 83

Q

Q variable .. 81
QUESTION.. 107
QUIT .. 60, 61
Q-variable .. 84, 88

R

R variable .. 81
r_variable... 89
radiant.. 91
rapid feed... 15
Read inputs- /outputs .. 67
real functions ... 27
real variables ... 86
REF ... 50
Reference run.. 50
REL.. 55
REPEAT .. 105
Request of an operator dialog 107
ResBit .. 68
rotatory axes.. 21
run time.. 82
R-variable .. 86

S

SAA standard .. 7
SCCLW.. 62
SCLW .. 62

isel-ProNC Programming Instruction

127

S-command ... 75
script.iso... 120
separator.. 15
sequence of NC sets ... 28
Set Analog output .. 70
Set memory ... 56
set number... 19
set output port.. 68
Set PWM output .. 70
set skip... 19
SetBit ... 68
SetP ... 68
SetPort... 68
SIN... 91
single drilling.. 54
SOFF ... 62
special signs .. 22
Spindle... 63
Spindle CCW ... 63
Spindle CW.. 63
spindle module .. 8
Spindle OFF... 63
Spindle ON .. 63
spindle speed .. 75
spindle switch off ... 62
Spindle switch on... 62
S-PTP-motion .. 34
SQR... 93
SQRT... 92
startvalue ... 102
Subprogram call .. 79
subprogram declaration..................................... 77
SUBR-command.. 79
SWITCH... 101
SWITCH-construction...................................... 101
symb_constant .. 89

T

T1-command.. 76
T2-command.. 76
TAN.. 92
T-command.. 76
TEACH... 51
test mode... 67
TIME .. 39

TOFF ..67
token...27
TON..67
tool change...76
tool changer modules...8
translatory axes..21
trigonometric functions27
TRUE..27
TYPE ..58

U

UNTIL ...105
USER ...108
user programs ..108
USERDLL...108
USEREXE ..108

V

Variable ..25
VEL-command..74
voltage value ..70

W

WARNING..107
WHILE ..103
WHILE-loop ..103
Windows-DLL...108
Windows-EXE ..108
word..9
Work piece clamp...64
WPCLAMP OFF...64
WPCLAMP ON...64
WPCLEAR..46
WPREG1..46
WPREG1WRITE ..56
WPREG2..46
WPREG2WRITE ..56
WPZERO..46

Z

Zero point shift..46
zero point shift-register.......................................56
Zero shift ..30

